DOI QR코드

DOI QR Code

Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea

우리나라 기후특성을 고려한 Hargreaves 공식의 매개변수 지역화

  • 문장원 (한국건설기술연구원 수자원환경연구본부 수자원연구실) ;
  • 정충길 (한국건설기술연구원 수자원환경연구본부 수자원연구실) ;
  • 이동률 (한국건설기술연구원 수자원환경연구본부 수자원연구실)
  • Received : 2013.07.03
  • Accepted : 2013.07.24
  • Published : 2013.09.30

Abstract

The quantitative analysis of evapotranspiration (ET) is a key component in hydrological studies and the establishment of water resources planning. Generally, the quantitative analysis of ET is performed by the estimation method of potential or reference ET based on meteorological factors such as air temperature, wind speed, etc. Hargreaves equation is one of empirical methods for reference ET using air temperature data. In this study, in order to estimate more exact reference ET considering climatological characteristics in Korea, parameter regionalization of Hargreaves equation is carried out. Firstly, modified Hargreaves equation is presented after the analysis of the relationship between solar radiation and temperature. Secondly, parameter ($K_{ET}$) optimization of Hargreaves equation is performed using Penman-Monteith method and modified equation at 71 weather stations. Lastly, the equation for calculating $K_{ET}$ using temperature data is proposed and verified. As a result, reference ET from original Hargreaves equation is overestimated or underestimated compared with Penman-Monteith method. But modified equation in this study is more accurate in the climatic conditions of Korea. In addition, the applicability of the equation between $K_{ET}$ and temperature is confirmed.

유역의 수문기상학적 특성을 분석하거나 수자원계획을 수립하는 과정에서 필수적인 사항은 증발산에 대한 정량적인 특성을 파악하는 것이다. 일반적으로 증발산량에 대한 정량적인 분석은 기온, 풍속 등 기상학적 인자를 바탕으로 잠재증발산량 또는 기준증발산량을 추정하는 방법을 이용하고 있으며, Hargreaves 공식은 기온자료를 이용하여 기준증발산량을 산정할 수 있는 간단한 경험식이라 할 수 있다. 본 연구에서는 Hargreaves 공식을 우리나라에 적용함에 있어 보다 정확한 기준증발산량 추정이 가능하도록 공식의 매개변수를 지역화하기 위한 연구를 수행하였다. 먼저 일사량 관측자료와 기온과의 관계를 검토하여 수정 관계식을 도출하였으며, 수정 관계식과 Penman-Monteith 방법에 의한 기준증발산량 산정결과를 이용하여 Hargreaves 공식의매개변수지역화를 수행하였다. 또한 매개변수와 기온과의 관계분석을 통해 기온자료로부터 Hargreaves 공식의 매개변수를 추정할 수 있는 관계식을 제안하였으며, 이에 대한 검증을 수행하였다. 연구결과, 우리나라에서 기존 Hargreaves 공식을 그대로 이용할 경우 Penman-Monteith 방법에 비해 과대 또는 과소 산정될 수 있음을 확인하였으며, 지역화된 매개변수를 이용할 경우 정확도가 크게 개선되고 있음을 확인하였다. 또한 기온자료로부터 Hargreaves 공식의 매개변수를 추정할 수 있는 관계식에 대한 검증을 통해 본 연구에서 제안한 관계식의 적용 가능성을 확인할 수 있었다.

Keywords

References

  1. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop Evapotranspiration. FAO Irrigation and Drainage Paper 56, Rome.
  2. Allen, R.G., Smith, M., Perrier, A., and Pereira, L.S. (1994). "An update for the definition of the reference evapotranspiration." ICID Bulletin, NewDelhi, Vol. 43, No. 2, pp. 1-34.
  3. Chae, H.S., Kim, S.J., and Jung, K.S. (1999). "GRID-based Daily Evapotranspiration Prediction Model (GRIDET)." Journal of Korean Water Resources Association, KWRA, Vol. 32, No. 6, pp. 721-730.
  4. Droogers, P., and Allen, R.G. (2002). "Estimating reference evapotranspiration under inaccurate data conditions." Irrigation and Drainage Systems, Vol. 16, pp. 33-45. https://doi.org/10.1023/A:1015508322413
  5. Gavilan, P., Lorite, I.J., Tornero, S., and Berengena, J. (2006). "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment." Agricultural Water Management, Vol. 81, pp. 257-281. https://doi.org/10.1016/j.agwat.2005.05.001
  6. Grismer, M.E., Orang, M., Snyder, R., and Matyac, R. (2002). "Pan Evaporation to Reference Evapotranspiration Conversion Methods." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 128, No. 3, pp. 180-184. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(180)
  7. Hargreaves, G.H. (1994). "Defining and Using Reference Evapotranspiration." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 120, No. 6, pp. 1132-1139. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
  8. Hargreaves, G.H., and Allen, R.G. (2003). "History and Evaluation of Hargreaves Evapotranspiration Equation." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 129, No. 1, pp. 53-63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
  9. Hargreaves, G.H., and Samani, Z.A. (1982). "Estimating potential evapotranspiration." Proceedings of the American Society of Civil Engineers, ASCE, Vol. 108, No. IR3, pp. 223-230.
  10. Hargreaves, G.H., and Samani, Z.A. (1985). "Reference Crop Evapotranspiration from Temperature." Applied Engineering in Agriculture, ASAE, Vol. 1, No. 2, pp. 96-99. https://doi.org/10.13031/2013.26773
  11. Hargreaves, G.L., Hargreaves, G.H., and Riley, J.P. (1985). "Irrigation Water Requirements for Senegal River Basin." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 111, No. 3, pp. 265-275. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:3(265)
  12. Jensen, M.E., Burman, R.D., and Allen, R.G. (1990). "Evapotranspiration and irrigation water requirements." ASCE Manuals and Reports on Engineering Practice, No. 70, p. 360.
  13. Lee, K.H., and Park, J.H. (2008). "Calibration of the Hargreaves Equation for the Reference Evapotranspiration Estimation on a Nation-Wide Scale." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 28, No. 6B, pp. 675-681.
  14. Lee, K.H., Cho, H.Y., and Oh, N.S. (2008). "Calibration and Validation of the Hargreaves Equation for the Reference Evapotranspiration Estimation in Gyeonggi Bay Watershed." Journal of Korean Water Resources Association, KWRA, Vol. 41, No. 4, pp. 413-422. https://doi.org/10.3741/JKWRA.2008.41.4.413
  15. McVicker, R. (1982). The Effects of Model Complexity on the Predictive Accuracy of Soil Moisture Accounting Models. in partial fulfillment of the requirements for the degree of Master of Science, Utah State University, Utah, USA.
  16. New, M., Lister, D., Hulme, M., and Makin, I. (2002). "A high-resolution data set of surface climate over global land areas." Climate Research, Vol. 21, pp. 1-25. https://doi.org/10.3354/cr021001
  17. Oh, N.S., and Lee, K.H. (2004). "Caluculation of Evapotranspiration Based on Daily Temperature." Journal of Korean Water Resources Association, KWRA, Vol. 37, No. 6, pp. 479-485. https://doi.org/10.3741/JKWRA.2004.37.6.479
  18. Oh, N.S., Lee, K.H., and Ko, Y.C. (2002). "Capability of Evapotranspiration Estimation with Short Field Data." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 22, No. 6-B, pp. 795-801.
  19. Rim, C.S. (2008). "Comparison of Evapotranspiration Estimation Approaches Considering Grass Reference Crop." Journal of Korean Water Resources Association, KWRA, Vol. 41, No. 2, pp. 212-228. https://doi.org/10.3741/JKWRA.2008.41.2.212
  20. Samani, Z. (2000). "Estimating Solar Radiation and Evapotranspiration using Minimum Climatological Data." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 126, No. 4, pp. 265-267. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265)
  21. Smith, M., Allen, R.G., Monteith, J.L., Pereira, L.S., Perrier, A., and Pruitt, W.O. (1991). Report on the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. Land and Water Development Division, United Nations Food and Agriculture Service, Rome.
  22. Temesgen, B., Allen, R.G., and Jensen, D.T. (1999). "Adjusting temperature parameters to reflect wellwatered conditions." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 125, No. 1, pp. 26-33. https://doi.org/10.1061/(ASCE)0733-9437(1999)125:1(26)
  23. Vanderlinden, K., Giraldez, J.V., and Meirvenne, M.V. (2004). "Assessing Reference Evapotranspiration by the Hargreaves Method in Southern Spain." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 130, No. 3, pp. 184-191. https://doi.org/10.1061/(ASCE)0733-9437(2004)130:3(184)

Cited by

  1. Comparison of the Penman‐Monteith method and regional calibration of the Hargreaves equation for actual evapotranspiration using SWAT-simulated results in the Seolma-cheon basin, South Korea vol.61, pp.4, 2016, https://doi.org/10.1080/02626667.2014.943231
  2. Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas vol.30, pp.4, 2014, https://doi.org/10.7780/kjrs.2014.30.4.10
  3. Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach vol.57, pp.2, 2015, https://doi.org/10.5389/KSAE.2015.57.2.001
  4. Effects on Water Supply Capacity According to Changes in the Normal Water Level of the Sayeon Dam vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.581
  5. Analysis of Reference Evapotranspiration Change in Korea by Climate Change Impact vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.71