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Abstract
This paper studies the skewness of the absolute value GARCH(1, 1) models with Gaussian mixture innova-

tions (Gaussian mixture AVGARCH(1, 1) models). The maximum estimated-likelihood estimator (MELE) em-
ployed (a two- step estimation method in order to estimate the skewness of Gaussian mixture AVGARCH(1, 1)
models. Through the real data analysis, the adequacy of adopting Gaussian mixture innovations is exhibited in
reflecting the skewness of two major Korean stock indices.
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1. Introduction

Many researchers have studied the dependence of financial time series data by analyzing the auto-
correlation function (ACF) of absolute and squared returns. One of the stylized facts in the pattern
of ACF is the Taylor effect discovered by Taylor (1988), which implies that the ACF of absolute
returns tends to be larger than those of squared returns. Generally, for any given integer value k,
ρδ(k) := Corr(|rt−k |δ, |rt |δ), δ > 0, is maximized for δ close to unity for returns, rt. We refer to Ding
et al. (1993) and Ding and Granger (1996) for the generalized Taylor effect. In order to reflect the
Taylor effect, some researchers such as He and Teräsvirta (1999), Gonçalves et al. (2009) and Haas
(2009), consider the absolute value GARCH(1, 1) (AVGARCH(1, 1)) models under the assumption
that the innovations have a symmetric density. However, the degree of the conditional kurtosis of
the innovations is crucial for the appearance of the Taylor effect (cf. Haas, 2009). Most studies on
the Taylor effect have been done under symmetric innovation distributions with high kurtosis such as
generalized exponential and student-t distributions. However, such a symmetric assumption should
be carefully investigated since financial time series data is frequently reported to be left-skewed by
many empirical studies (cf. Haas et al., 2004; Lee et al., 2009; Lee and Lee, 2009); subsequently,
symmetric AVGARCH(1,1) models might be inconsistent with skewed financial time series data.

In this paper, we derive the expression for the skewness of AVGARCH(1, 1) models under the
assumption that innovations follow Gaussian mixture distributions. We refer to this model as Gaus-
sian mixture AVGARCH(1, 1) models. This is because the Gaussian mixture approach is a functional
tool to model leptokurtic and skewed distributions (cf. McLachlan and Peel, 2000). In order to es-
timate the skewness of Gaussian mixture AVGARCH(1, 1) models, one can simply adopt the usual
conditional maximum likelihood estimator (CMLE) and EM-like algorithm as in Lee and Lee (2009).
However, the EM-like algorithm for computing CMLE is highly time consuming and does not com-
pletely guarantee its convergence (cf. Lee and Lee, 2009). Therefore, we employ the maximum
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estimated-likelihood estimator (MELE), which is a type of the two-step estimation method of Lee and
Lee (2012). Through the real data analysis, the adequacy of adopting Gaussian mixture innovations
is exhibited in reflecting the skewness of two major Korean stock indices, KOSPI200 (Korea Stock
Price Index 200) and KOSDAQ (Korea Securities Dealers Automated Quotation).

This paper is organized as follows. In Section 2, we introduce the MELE and present the expres-
sion of the skewness of Gaussian mixture AVGARCH(1, 1) models. In Section 3, we perform a real
data analysis to illustrate our findings. In Section 4, we provide the proof of the theorems presented
in Section 2.

2. Main Results

Consider the absolute value GARCH(1, 1) model:

Xt = ϵtσt(θ),
σt(θ) = ω + α|Xt−1| + βσt−1(θ), t ∈ Z, (2.1)

where {ϵt} is a sequence of iid r.v.’s with zero mean and unit variance. We further assume that ϵt

follows a two component Gaussian mixture density of the form

fη(y) = π f (y; µ1, σ1) + (1 − π) f (y; µ2, σ2),

where f (y; µi, σi) := 1/{
√

2πσi} exp[−1/2{(y − µi)/σi}2] for i = 1, 2, where

E [ϵt] = πµ1 + (1 − π)µ2 = 0,

E
[
ϵ2

t

]
= π

(
µ2

1 + σ
2
1

)
+ (1 − π)

(
µ2

2 + σ
2
2

)
= 1.

The parameter vector is φ = (θT , ηT )T , where θ = (ω, α, β)T and η = (π, µ1, σ1)T and the true param-
eter vector is φ0 = (θT

0 , η
T
0 )T , where θ0 = (ω0, α0, β0)T and η0 = (π0, µ10, σ10)T . The parameter space

of φ is Φ = Φ1 × Φ2, where Φ1 ⊂ (0,∞) × [0,∞)2 and Φ2 ⊂ [0, 1] × R × (0,∞).

2.1. Estimation of Gaussian mixture AVGARCH model

In this section, we study the MELE, which is a two-step estimated-likelihood method to estimate
φ0. First, conditional on the initial r.v.’s X0 and σ̃0, the residuals are obtained by using the Gaussian
QMLE θ̂n = (ωn, αn, βn)T proposed by Pan et al. (2008) as follows:

ϵ̃t :=
Xt

σ̃t

(
θ̂n

) , t = 1, . . . , n, (2.2)

where σ̃t(θ̂n) are defined recursively using

σ̃t

(
θ̂n

)
:= ω̂ + α̂|Xt−1| + β̂σ̃t−1

(
θ̂n

)
. (2.3)

Initial r.v.’s for X0 and σ̃0 are often chosen as X1 (cf. Francq and Zakoı̈an, 2004, p.608).
Then, we obtain the estimator for η0 based on the residuals as η̃n := arg maxη∈Θ2 l̃n(η), where

l̃n(η) := 1/n
∑n

t=1 log fη(ϵ̃t). It is worth noting that any
√

n-consistent estimator can be used to obtain
the residuals. By plugging η̃n into the conditional likelihood l̃n(θ, η) defined as

l̃n(θ, η) :=
1
n

log L̃n(θ, η) =
1
n

n∑
t=1

W̃t(θ, η) (2.4)
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and W̃t(θ, η) := log{(1/σt(θ)) fη(Xt/σt(θ))}, the estimated quasi-likelihood and the MELE for θ are
obtained as follows:

l̃n (θ, η̃n) :=
1
n

n∑
t=1

W̃t (θ, η̃n) (2.5)

and θ̂e
n := arg maxθ∈Θ1 l̃n(θ, η̃n), respectively, where

W̃t(θ, η̃n) := log
{

1
σ̃t(θ)

fη̃n

(
Xt

σ̃t(θ)

)}
.

Throughout this paper, it is assumed that all r.v.’s are defined on a probability space (Λ,F , P). The
spectral radius of square matrix A is denoted by ρ(A). LetAθ(z) = αz and Bθ(z) = 1 − βz. In order to
obtain the asymptotic properties of η̃n and θ̂e

n, we consider the following regularity conditions:

(A1) φ0 is an interior point of Φ and Φ is compact

(A2) E[log(β0 + α0|ϵt |] < 0 and β < 1 for each θ ∈ Φ1

(A3) If β0 , 0,Aθ0 (1) = α0 , 0

Given below are the asymptotic properties for η̃n and θ̂e
n. The proofs are given in Section 4.

Theorem 1. Suppose that (A1)–(A3) hold. Then, η̃n → η0 a.s. as n→ ∞.

Theorem 2. Suppose that (A1)–(A3) hold. Then, θ̂e
n → θ0 a.s. as n→ ∞.

Remark 1. For the strictly stationarity of AVGARCH models, the top Lyapunov exponent γθ0 at θ0
is assumed to be strictly negative. However, the top Lyapunov exponent can be explicitly expressed
for AVGARCH(1,1) models. It can be seen that γθ0 = E[log(β0 + α0|ϵt |] by following the arguments
(for example) in Section 2 of Lee and Noh (2013). Thus, in (A2), the strictly stationary condition
γθ0 < 0 is replaced by E[log(β0 + α0|ϵt |] < 0.

2.2. Skewness of Gaussian mixture AVGARCH model

In this section, we derive the skewness of Gaussian mixture AVGARCH(1, 1) models. In the follow-
ing, we denote the skewness of Xt by γX , which is called the overall skewness. First, one can see from
elementary calculations that

E [σt] =
ω

1 − αE|ϵt | − β
,

E
[
σ2

t

]
=
ω2 + 2ωαE|ϵt |E[σt] + 2ωβE[σt]

1 − β2 − α2 − 2αβE|ϵt |
,

and

E
[
σ3

t

]
=
ω3 + 3ω2αE|ϵt |E[σt] + 3ωα2E

[
σ2

t

]
+ 3ω2βE[σt] + 6ωαE|ϵt |E

[
σ2

t

]
+ 3ωβ2E

[
σ2

t

]
1 − α3E|ϵt |3 − 3α2β − 3αβ2E|ϵt | − β3 .
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Table 1: Descriptive statistics for log returns of KOSPI200 and KOSDAQ indices
KOSPI200 KOSDAQ

Mean 0.0006 0.0001
Standard deviation 0.0158 0.0164

Maximum 0.1154 0.1086
Minimum −0.1090 −0.1103
Skewness −0.4131 −1.0778
Kurtosis 8.1377 10.4598

Jarque-Bera 2256.5740 5024.5250
(P-value) (0.0000) (0.0000)

Table 2: QMLE estimates for AVGARCH(1, 1) model
Series ω α β

KOSPI200 0.0015 0.1644 0.7744
KOSDAQ 0.0013 0.2426 0.7336

Table 3: MELE estimates for Gaussian mixture AVGARCH(1, 1) model
Series ω α β π µ1 µ2 σ1 σ2

KOSPI200 0.0015 0.1558 0.7845 0.4742 −0.1894 0.1708 1.2834 0.5928
KOSDAQ 0.0012 0.2267 0.7517 0.2394 −0.7355 0.2314 1.4274 0.6703

Table 4: Estimates of skewness for Gaussian mixture AVGARCH(1, 1) model
Series Overall skewness Sample skewness

KOSPI200 −0.3815 −0.4131
KOSDAQ −1.2743 −1.0778

Then, using E[X2
t ] = E[ϵ2

t ]E[σ2
t ] = E[σ2

t ] and E[X3
t ] = E[ϵ3

t ]E[σ3
t ], we get

γX
1 =

E
[
X3

t

]
(
E

[
X2

t

]) 3
2

=
E

[
ϵ3

t

]
E

[
σ3

t

]
(
E

[
σ2

t

]) 3
2

. (2.6)

By replacing the parameters in (2.6) with the MELE, η̃n and θ̂e
n, in Section 2.1, we can obtain the

estimator γ̂X for the overall skewness γX . This estimator will be used for the real data analysis in
Section 3.

3. Real Data Analysis

In this section, we applied the proposed estimation method and calculated the overall skewness for
KOSPI200 (Korea Stock Price Index 200) and KOSDAQ(Korea Securities Dealers Automated Quo-
tation) indices from December 13, 2002 to December 30, 2010. Both the KOSPI 200 and KOSDAQ
indices contained 2000 observations. Table 1 provides descriptive statistics for the log returns of
KOSPI 200 and KOSDAQ indices. The skewness and kurtosis estimates show that the log returns
series are negatively skewed and leptokurtic. Moreover, it is seen from the Jarque-Bera normality test
that the log return series are not normally distributed.

The Gaussian quasi-maximum likelihood (QMLE) and maximum estimated-likelihood estimates
(MELE) are given in Table 2 and Table 3, respectively. The estimated overall skewness of Gaussian
mixture AVGARCH(1, 1) models for KOSPI200 and KOSDAQ data are obtained by applying the
results in Section 2.2 and the estimates given in Table 3 and shown in Table 4, together with the



Skewness of Gaussian Mixture Absolute Value GARCH(1, 1) Model 399

−6 −4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(a) True
(b) MIXTURE
(c) NORMAL

Figure 1: Densities of KOSPI200 residuals; (a) Kernel; (b) Mixture; (c) Normal
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Figure 2: Densities of KOSDAQ residuals; (a) Kernel; (b) Mixture; (c) Normal

sample skewness. Figure 1 and Figure 2 show the shape of the estimated kernel, standard normal and
Gaussian mixture densities of the AVGARCH(1, 1) residuals. From the Tables and Figures, we have
several important findings. First, it is observed that the deviation between the QMLE and MELE of
KOSDAQ index is more distinctive than the KOSPI200 index. This may be because the skewness of
KOSDAQ index to the left is more distinctive as seen in Table 4 and Figure 1 and Figure 2. Next,
the estimated overall skewness and the sample skewness in Table 3 are found to be very close to each
other. This may imply that Gaussian mixture AVGARCH(1, 1) models are successful to capture the
skewness of KOSPI200 and KOSDAQ data. Finally, the estimated densities in Figure 1 and Figure
2 indicate that Gaussian mixture density is more appropriate to capture the left-skewed distributions
of AVGARCH(1, 1) residuals than the standard normal distribution. The findings strongly suggest
that Gaussian mixture models for AVGARCH(1, 1) innovations are more adequate to reflect the left-
skewness of KOSPI200 and KOSDAQ data that provide a better fit to skewed financial time series
data.
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4. Proofs

In this section, we provide the proofs for the theorems in Section 2. The following lemma is from Ha
and Lee (2011).

Lemma 1. Under the condition (A1),

sup
η∈Ω

∣∣∣∣∣ ∂∂y
log fη(y)

∣∣∣∣∣ ≤ C (|y| + 1) , (4.1)

sup
η∈Ω

∣∣∣∣∣ ∂∂η log fη(y)
∣∣∣∣∣ ≤ C (|y| + 1) . (4.2)

Lemma 2. Let σt and σ̃t be the symbols in (2.1) and (2.3), respectively. Suppose that the conditions
(A1) and (A2) hold. Then, there exists ρ ∈ (0, 1) such that, for all t ≥ 1 and 0 ≤ i ≤ 1,

sup
θ∈Φ1

|σt(θ) − σ̃t(θ)| ≤ Cρt. (4.3)

Proof: It can be similarly done as in the proof of Theorem 2.1 of Francq and Zakoı̈an (2004). �

Below, two lemmas are introduced. The first lemma is from Corollary 1 in Lee and Lee (2011)
and the second lemma is done in Theorem 3 of Leroux (1992).

Lemma 3. Let θ̂n be the Gaussian QMLE in (2.2). Suppose that the conditions (A1)–(A3) hold.
Then, we have, θ̂n → θ0 a.s., as n→ ∞.

Lemma 4. Let η̂n := arg maxη∈Ω l∗n(η), where l∗n(η) := 1/n
∑n

t=1 log fη(ϵt). Then, η̂n → η0 a.s., as
n→ ∞.

Lemma 5. Let ϵ̃t be the symbol in (2.2). Suppose that the conditions (A1)–(A3) hold. Then, we have,
as n→ ∞,

1
n

n∑
t=1

|ϵ̃t − ϵt | → 0 a.s.. (4.4)

1
n

n∑
t=1

|ϵt ||ϵ̃t − ϵt | → 0 a.s.. (4.5)

1
n

n∑
t=1

|ϵ̃t ||ϵ̃t − ϵt | → 0 a.s.. (4.6)

Proof: Since (4.5) and (4.6) can be similarly proved as (4.7), we only deal with (4.4). First, we have

1
n

n∑
t=1

|ϵ̃t − ϵt | =
1
n

n∑
t=1

∣∣∣∣∣∣∣∣ Xt

σ̃t

(
θ̂n

) − ϵt

∣∣∣∣∣∣∣∣ ≤ 1
n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t

(
θ̂n

)
− σt(θ0)

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣

≤ C
1
n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t

(
θ̂n

)
− σ̃t(θ0)

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣ +C

1
n

n∑
t=1

|ϵt | |σ̃t(θ0) − σt(θ0)|

≤ C
1
n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t

(
θ̂n

)
− σ̃t(θ0)

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣ +C

1
n

n∑
t=1

|ϵt | ρt.
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Then, it suffices to show that

1
n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t

(
θ̂n

)
− σ̃t(θ0)

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣→ 0 a.s. (4.7)

1
n

n∑
t=1

|ϵt | ρt → 0 a.s.. (4.8)

Now, we have

1
n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t

(
θ̂n

)
− σ̃t(θ0)

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣ ≤ 1

n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣ ω̂n − ω0

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣ + 1

n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣ Xt−1

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣ |α̂n − α0|

+
1
n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t−1

(
θ̂n

)
σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣
∣∣∣β̂n − β0

∣∣∣ + 1
n

n∑
t=1

|ϵt | β0

∣∣∣∣∣∣∣∣
σ̃t−1

(
θ̂n

)
− σ̃t−1(θ0)

σ̃t

(
θ̂n

)
∣∣∣∣∣∣∣∣

≤ C |ω̂n − ω0|
1
n

n∑
t=1

|ϵt | +C
1
α̂n
|α̂n − α0|

1
n

n∑
t=1

|ϵt |

+C
1
β̂n

∣∣∣β̂n − β0

∣∣∣ 1
n

n∑
t=1

|ϵt | +C
1
β̂n

1
n

n∑
t=1

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t−1

(
θ̂n

)
− σ̃t−1(θ0)

σ̃t−1

(
θ̂n

)
∣∣∣∣∣∣∣∣

= R1n + R2n
1
n

n∑
t=2

|ϵt |

∣∣∣∣∣∣∣∣
σ̃t−1

(
θ̂n

)
− σ̃t−1(θ0)

σ̃t−1

(
θ̂n

)
∣∣∣∣∣∣∣∣

...

= R′1n + R′2n
1
n
|ϵt |

∣∣∣∣∣∣∣∣
σ̃1

(
θ̂n

)
− σ̃1(θ0)

σ̃1

(
θ̂n

)
∣∣∣∣∣∣∣∣

≤ R′1n + R′2n
1
n
|ϵt | {|ω̂n − ω0| + |X0| |α̂n − α0|} ,

where R1n → 0 a.s., R′1n → 0 a.s., R2n → C a.s. and R′2n → C a.s. and thus, (4.7) is established.
Next, (4.8) is obtained due to the Cesàro lemma and the fact that |ϵt | ρt → 0 almost surely. Hence, the
lemma is verified. �

Proof of Theorem 1: The theorem can be easily proven by using Lemma 1–Lemma 5 as the proof of
Theorem 1 of Ha and Lee (2011). The details are omitted for brevity. �

Next, the following lemma is necessary to prove Theorem 2.

Lemma 6. Suppose that the conditions (A1) and (A2) hold. Then, as n→ ∞,

n−1
n∑

t=1

sup
θ∈Φ1

∣∣∣∣∣∣log
(
σt(θ)
σ̃t(θ)

)∣∣∣∣∣∣ → 0 a.s.
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Proof: We simply have ∣∣∣∣∣∣log
(
σt(θ)
σ̃t(θ)

)∣∣∣∣∣∣ ≤ max
{

1
σt(θ)

,
1

σ̃t(θ)

}
|σt(θ) − σ̃t(θ)|

and thus,

n−1
n∑

t=1

sup
θ∈Φ1

∣∣∣∣∣∣log
(
σt(θ)
σ̃t(θ)

)∣∣∣∣∣∣ ≤ n−1
n∑

t=1

sup
θ∈Φ1

{
max

{
1

σt(θ)
,

1
σ̃t(θ)

}
|σt(θ) − σ̃t(θ)|

}

≤
{

sup
θ∈Φ1

1
ω

}
n−1

n∑
t=1

sup
θ∈Φ1

|σt(θ) − σ̃t(θ)|

≤ Cn−1
n∑

t=1

ρt,

where the last inequality follows from (A1) and Lemma 2. Since ρ ∈ (0, 1) due to (A1) and the second
part of (A2), the lemma is established. �

Let l̃n(θ, η̃∗n) be the symbol in (2.5) and define ln(θ, η̃∗n) := 1/n
∑n

t=1 Wt(θ, η̃∗n) and

Wt
(
θ, η̃∗n

)
:= log

{
1

σt(θ)
fη̃∗n

(
Xt

σt(θ)

)}
.

Lemma 7. Suppose that the conditions (A1) and (A2). Then, as n→ ∞,

lim
n→∞

sup
θ∈Φ1

∣∣∣l̃n (
θ, η̃∗n

) − ln
(
θ, η̃∗n

)∣∣∣ = 0 a.s..

Proof: Note that we have

∣∣∣l̃n (
θ, η̃∗n

) − ln
(
θ, η̃∗n

)∣∣∣ ≤ 1
n

n∑
t=1

∣∣∣∣∣∣log
{

1
σ̃t(θ)

fη̃∗n

(
Xt

σ̃t(θ)

)}
− log

{
1

σt(θ)
fη̃∗n

(
Xt

σt(θ)

)}∣∣∣∣∣∣
≤ 1

n

n∑
t=1

∣∣∣∣∣∣log
{
σt(θ)
σ̃t(θ)

}∣∣∣∣∣∣ + 1
n

n∑
t=1

∣∣∣∣∣∣log
{

fη̃∗n

(
Xt

σ̃t(θ)

)}
− log

{
fη̃∗n

(
Xt

σt(θ)

)}∣∣∣∣∣∣ .
Therefore, it suffices to show that

n−1
n∑

t=1

sup
θ∈Φ1

∣∣∣∣∣∣log
(
σt(θ)
σ̃t(θ)

)∣∣∣∣∣∣ → 0 a.s. (4.9)

n−1
n∑

t=1

sup
θ∈Φ1

∣∣∣∣∣∣log
{

fη̃∗n

(
Xt

σ̃t(θ)

)}
− log

{
fη̃∗n

(
Xt

σt(θ)

)}∣∣∣∣∣∣ → 0 a.s. (4.10)

First, we prove (4.9). We simply have∣∣∣∣∣∣log
(
σt(θ)
σ̃t(θ)

)∣∣∣∣∣∣ ≤ max
{

1
σt(θ)

,
1

σ̃t(θ)

}
|σt(θ) − σ̃t(θ)|
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and thus,

n−1
n∑

t=1

sup
θ∈Φ1

∣∣∣∣∣∣log
(
σt(θ)
σ̃t(θ)

)∣∣∣∣∣∣ ≤ n−1
n∑

t=1

sup
θ∈Φ1

{
max

{
1

σt(θ)
,

1
σ̃t(θ)

}
|σt(θ) − σ̃t(θ)|

}

≤
{

sup
θ∈Φ1

1
ω

}
n−1

n∑
t=1

sup
θ∈Φ1

|σt(θ) − σ̃t(θ)|

≤ Cn−1
n∑

t=1

ρt,

where the last inequality follows from (A1) and Lemma 2. Since ρ ∈ (0, 1) due to (A1) and the second
part of (A2), (4.9) is established.

Next, we deal with (4.10). Using Lemma 1 we get,∣∣∣∣∣∣log
{

fη̃∗n

(
Xt

σ̃t(θ)

)}
− log

{
fη̃∗n

(
Xt

σt(θ)

)}∣∣∣∣∣∣ ≤
∣∣∣∣∣ Xt

σ̃t(θ)
− Xt

σt(θ)

∣∣∣∣∣ (max
{
|Xt |
σ̃t(θ)

,
|Xt |
σt(θ)

}
+ 1

)
≤ C |σ̃t(θ) − σt(θ)| (|Xt | + 1)2 ,

and therefore,

1
n

n∑
t=1

sup
θ∈Φ1

∣∣∣∣∣∣log
{

fη̃∗n

(
Xt

σ̃t(θ)

)}
− log

{
fη̃∗n

(
Xt

σt(θ)

)}∣∣∣∣∣∣ ≤ C
1
n

n∑
t=1

{
sup
θ∈Φ1

|σ̃t(θ) − σt(θ)|
}

(|Xt | + 1)2 ,

≤ C
1
n

n∑
t=1

ρt (|Xt | + 1)2 .

Then, (4.10) is easily proved similarly as (4.8). �

The following two lemmas can be similarly proved as in the proof of Lemma 10–11 of Ha and
Lee (2011).

Lemma 8. Suppose that (A1)–(A3) hold. Let Wt(θ, η) := log{(1/σt(θ)) fη(Xt/σt(θ))}. Then,

E
 sup

(θ,η)∈Φ
Wt(θ, η)

 < ∞
and for any (θ, η) , (θ0, η0),

E
[
Wt(θ, η)

]
< E

[
Wt(θ0, η0)

]
.

Lemma 9. Suppose that (A1)–(A3) hold. Any θ (, θ0) has a neighborhood N(θ) such that

lim
n→∞

sup
θ′∈N(θ)

l̃n(θ, η̃∗n) < EWt(θ0, η0) a.s..

Proof of Theorem 2: Similar to the proof of Theorem 2 of Ha and Lee (2011), the consistency of the
MELE can be obtained by using Theorem 1 and Lemmas 6–9. The details are omitted for brevity. �
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