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Abstract
We consider a compound Poisson risk model in which the premium rate changes when the surplus exceeds

a threshold. The explicit form of the ruin probability for the risk model is obtained by deriving and using the
overflow probability of the workload process in the corresponding M/G/1 queueing model.
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1. Introduction

In this paper, a compound Poisson risk model with a two-step premium rule is considered. We assume
that customers’ claims arrive according to a Poisson process {N(t), t ≥ 0} with a parameter λ > 0,
and the sizes of the individual claims {Y1,Y2, . . .} are independent and identically distributed positive
random variables with a common distribution function G(y) = Pr[Y ≤ y] and mean m =

∫ ∞
0 y dG(y).

We also assume that {Y1,Y2, . . .} are independent of N(t). Then the aggregate of all claims up to time
t, denoted by S (t), can be expressed by

S (t) =
N(t)∑
i=1

Yi,

where S (t) = 0 if N(t) = 0.
If the current surplus is below a constant threshold level b > 0, then the annual premium rate is

assumed to be

p1 := λm(1 + θ1),

where θ1 > 0 is the relative security loading. When the surplus is above threshold b, then dividends
are paid at the annual dividend rate q, 0 < q ≤ p1; therefore, we assume that the premium rate is
p2 := p1 − q ≥ 0, and then

p2 = λm(1 + θ2),

where 0 < θ2 < θ1 is the relative security loading.
If U(t) is the surplus in this risk model at time t, then we have

U(t) = u +
∫ t

0
p (U(s)) ds − S (t),
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Figure 1: A sample path of the surplus process in the compound Poisson risk model with a two-step premium
rule.

where u = U(0) ≥ 0 is the initial surplus, and

p(x) =
{

p1, if 0 ≤ x < b,
p2, if x ≥ b.

Following previous authors, the (ultimate) ruin time is defined as

T := inf{t > 0 |U(t) < 0},

where T = ∞ if ruin never occurs. A sample path of the surplus process {U(t), t ≥ 0} is shown in
Figure 1.

Lin and Pavlova (2006) analyzed this model by deriving and solving the Gerber-Shiu discounted
penalty function introduced by Gerber and Shiu (1998). This useful function allows us to derive
results related to joint and marginal distributions of the ruin time T , the surplus U(T−) immediately
before the ruin time, and the deficit |U(T )| at the ruin time. When δ ≥ 0, the Gerber-Shiu discounted
penalty function is defined as

m(u) = E
[
e−δT v(U(T−), |U(T )|)I(T < ∞)|U(0) = u

]
,

where v is a nonnegative function of the surplus before ruin and the deficit at ruin, and I is an indicator
function. If we let both δ = 0 and v( · , · ) = 1, then this function expresses the (ultimate) ruin
probability

ψ(u) := Pr[T < ∞ |U(0) = u],

which is the main objective of insurance risk models.
Asmussen (2000) pointed out that “Historically, the connection between risk theory and other

applied probability areas appears first to have been noted by Prabhu (1961) in a queueing context.”
Using time reversion, Asmussen and Petersen (1988) made the connection between a risk model with
a general premium rate and a dam model with a general release rate; subsequently, they observed that
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the ruin probability can be derived from the stationary distribution of level in the dam; however, the
interaction between risk theory and queueing theory has been quite limited.

In this paper, we obtain the ruin probability ψ(u) by applying the overflow probability of the work-
load process in the M/G/1 queueing model corresponding to a compound Poisson risk model. The
duality between the queueing model and the risk model facilitates the derivation of some characteris-
tics of one model from the other. Song and Lee (2011) obtained the probability that the ruin occurs
before the surplus reaches a given large value in this risk model. Section 2 reviews several results
related to the ordinary M/G/1 workload process and Section 3 describes a modified M/G/1 workload
process that furthers our analysis of the surplus process with a two-step premium rule. We also derive
the overflow probability that the workload exceeds a certain level for the first time. Section 4 uses the
overflow probability of the queueing model to obtain a ruin probability for the risk model, which is
consistent with that derived by Lin and Pavlova (2006).

2. M/G/1M/G/1M/G/1 Workload Process

Let {V(t), t ≥ 0} be the workload process for an ordinary M/G/1 queueing model in which a server
works with a service rate p: that is, the workload of the server decreases by p over unit time. Cus-
tomers arrive according to a Poisson process of rate λ, and the workloads added by the arriving cus-
tomers are independent and identically distributed with distribution G and mean m. If we rescale time
by considering 1/p as the unit of time, then the arrival rate becomes λ/p, the service rate becomes 1,
and the traffic intensity becomes ρ := λm/p. We assume that ρ < 1.

Let 0 ≤ α < β < ∞. For α ≤ x ≤ β, and following Lee (2007), we define

Tx(α, β) := inf {t ≥ 0 |V(t) < (α, β],V(0) = x}

to represent the first exit time from (α, β] for the process {V(t), t ≥ 0}, starting at V(0) = x. We use
Ge(x) to denote the equilibrium distribution function of G, which is

Ge(x) :=
1
m

∫ x

0
[1 −G(u)]du,

and we let

H(x) =
∞∑

n=0

ρnG∗ne (x),

where ∗n is the n-fold Stieltjes convolution and G∗0e (x) is the Heaviside function such that I(x ≥ 0).
Bae et al. (2002) showed that

Pr
[
V(Tx(0, β)) > β

]
= 1 − H(β − x)

H(β)
, 0 ≤ x ≤ β,

meaning that the probability of the process {V(t), t ≥ 0}, starting at x, up-crosses β before reaching 0.
If we generalize the interval, this expression becomes

Pr
[
V(Tx(α, β)) > β

]
= 1 − H(β − x)

H(β − α)
, α ≤ x ≤ β. (2.1)
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Bae et al. (2001) also obtained the distribution of levels of the process {V(t), t ≥ 0} at the exit time
Tx(0, x) for x > 0, which is given by

Pr [V(Tx(0, x)) > x + l] =
ρ(H ∗ Jl)(x)

H(x)
, l ≥ 0,

where

Jl(x) := Ge(x + l) −Ge(l),

and

(H ∗ Jl)(x) =
∫ x

0−
Jl(x − s)dH(s).

Similarly, for any 0 ≤ α < x, we can show that

Pr [V(Tx(α, x)) > x + l] =
ρ(H ∗ Jl)(x − α)

H(x − α)
, l ≥ 0. (2.2)

Let {V∞(t), t ≥ 0} be the process that is derived from {V(t), t ≥ 0} when we allow the workload to
take negative values. If we use Lx to denote the excess amount at the first passage time through x of
the process {V∞(t), t ≥ 0}, starting at x, then we have the following lemma:

Lemma 1. The distribution function of Lx is given by

Pr [Lx ≤ l] = 1 − ρ [1 −Ge(l)]

which is independent of x.

Proof: From the definition of Lx, we observe that

Lx ≡ V∞(Tx(−∞, x)) − x,

where ≡ denotes equality of distribution. It follows from (2.2) that, for any −∞ < a < x,

Pr [V∞(Tx(a, x)) > x + l] =
ρ(H ∗ Jl)(x − a)

H(x − a)
. (2.3)

Letting a go to −∞ in (2.3) yields

Pr [Lx > l] = lim
a→−∞

Pr [V∞(Tx(a, x)) > x + l]

=
ρ(H ∗ Jl)(∞)

H(∞)
= ρ[1 −Ge(l)],

in which the final equality follows from H(∞) = 1/(1 − ρ) and

(H ∗ Jl)(∞) =
∫ ∞

0−
[1 −Ge(l)]dH(s)

=
1 −Ge(l)

1 − ρ
because H(0−) = 0. �
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Figure 2: A sample path of the workload process {W(t), t ≥ 0}.

3. M/G/1M/G/1M/G/1 Workload Process under a Two-Step Service Rule

We first specify an M/G/1 queueing model where the workload process is coupled to the surplus
process of our risk model. The arrival of customers follows a Poisson process of rate λ, and each
customer brings a job consisting of an amount of work Y that is independent and identically distributed
with the distribution function G and mean m. A server starts to work on an initial workload of w and
decreases that workload at two different service rates: If the current workload exceeds a constant
threshold d, then the server works at the service rate p1. If the workload is less than d, the server
changes his/her service rate to p2. We assume that λm < p1 and λm < p2. Furthermore, we assume
that the workload can take negative values. If the workload belongs to (d,∞), then the server works
with a service rate of p1; however, if the workload lies in (−∞, d], the server works with a service rate
of p2. Let {W(t), t ≥ 0} be the workload process of this queueing model. Figure 2 depicts a sample
path of the workload process {W(t), t ≥ 0}.

If the workload exceeds some large z, then we say that overflow has occurred in this model.
Therefore, the overflow time is defined as T ∗ := inf{t > 0 |W(t) > z}, where T ∗ = ∞ if no overflows
occur. Thus, for w ≤ z, the probability that the workload process overflows can be expressed as

ξ(w, z) := Pr
[
T ∗ < ∞|W(0) = w

]
.

Since ξ(w, z) depends on the initial level w, we can write

ξ(w, z) =
{
ξ1(w, z), if d < w ≤ z,
ξ2(w, z), if w ≤ d.

3.1. Overflow probability when d < w ≤ z

If the initial workload w lies in (d, z], then the server starts to serve with rate p1. Once the workload
reaches the lower level d, the server changes its service rate to p2. Let {W1(t), t ≥ 0} be a process
obtained from the original process {W(t), t ≥ 0} by separating the periods during which the service
rate is p1 and then connecting them together. Therefore, the process {W1(t), t ≥ 0} has the state space
(d,∞). Furthermore, let {W2(t), t ≥ 0} be formed similarly by separating and connecting the residual
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periods of the process {W(t), t ≥ 0}. Then the process {W2(t), t ≥ 0} has the service rate p2 and the
state space (−∞, d].

We note that the process {W(t), t ≥ 0}, starting at w, can up-cross z either before or after reaching
d. Since the process {W(t), t ≥ 0} coincides with {W1(t), t ≥ 0} until it down-crosses d, the probability
that {W(t), t ≥ 0} up-crosses z before reaching d is equal to the probability that {W1(t), t ≥ 0} up-
crosses z before reaching d. From (2.1), we see that the latter probability is given by

Pr [W1(Tw(d, z)) > z] = 1 − H1(z − w)
H1(z − d)

, (3.1)

where H1(x) :=
∑∞

n=0 ρ
n
1G∗ne (x) with ρ1 := λm/p1.

If the process {W(t), t ≥ 0}, starting at w, is to up-cross z after reaching d, it obviously has to reach
d without up-crossing z. In this case we decompose {W(t), t ≥ 0} into two processes {W1(t), t ≥ 0} and
{W2(t), t ≥ 0}. The process {W(t), t ≥ 0} is the same as {W1(t), t ≥ 0} until it reaches d. Thus, from the
Markov property of {W(t), t ≥ 0}, it follows that

Pr [W(Tw(d, z)) = d,W(Td(−∞, z)) > z]
= Pr [W1(Tw(d, z)) = d] Pr

[{W(t), t ≥ 0}, starting at d, up-crosses z
]
. (3.2)

Let L∗x denote the excess amount at the first passage time through x of the process {W2(t), t ≥ 0}
which starts at x ≤ d. By Lemma 1, L∗x has the distribution function F(l) := 1 − ρ2[1 − Ge(l)] with
ρ2 := λm/p2. After the process {W(t), t ≥ 0} reaches d, it replicates {W2(t), t ≥ 0} until it leaves
(−∞, d]. Therefore, if we condition the above expression on L∗d, we have

Pr
[{W(t), t ≥ 0}, starting at d, up-crosses z

]
= Pr

[{W2(t), t ≥ 0}, starting at d, up-crosses z
]

+

∫ z−d

0
Pr

[{W1(t), t ≥ 0}, starting at d + l, up-crosses z
]
dF(l)

= 1 − F(z − d) +
∫ z−d

0
ξ1(d + l, z) dF(l). (3.3)

Combining (3.1), (3.2) and (3.3), we obtain

ξ1(w, z) = 1 − H1(z − w)
H1(z − d)

+
H1(z − w)
H1(z − d)

(
1 − F(z − d) +

∫ z−d

0
ξ1(d + l, z) dF(l)

)
= 1 − H1(z − w)

H1(z − d)

(
1 − ρ2 + ρ2

∫ z−d

0

[
1 − ξ1(d + l, z)

]
dGe(l)

)
. (3.4)

We will now find an explicit expression for the solution of this renewal equation.

Theorem 1. If the initial value of w belongs to (d, z], then the overflow probability of the workload
process {W(t), t ≥ 0} is given by

ξ1(w, z) = 1 − ρ1(1 − ρ2)H1(z − w)
ρ2 + (ρ1 − ρ2)H1(z − d)

.

Proof: To simplify our notation, we let

Φ1(w, z) := 1 − ξ1(w, z).
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Then (3.4) can be rewritten as

Φ1(w, z) =
H1(z − w)
H1(z − d)

(
1 − ρ2 + ρ2

∫ z−d

0
Φ1(d + l, z) dGe(l)

)
. (3.5)

From this equation we can see that Φ1(w, z) is a product of H1(z − w) and some function of z, which
we will call A(z). Therefore we can write

Φ1(w, z) = H1(z − w)A(z).

Substituting this equation into (3.5) yields

H1(z − w)A(z) =
H1(z − w)
H1(z − d)

(
1 − ρ2 + ρ2A(z)

∫ z−d

0
H1(z − d − l) dGe(l)

)
.

Solving this equation with respect to A(z) while noting that the relation (Ge ∗H1)(x) = [H1(x)−1]/ρ1,
we have

A(z) =
ρ1(1 − ρ2)

ρ2 + (ρ1 − ρ2) H1(z − d)
,

which completes the proof. �

We remark that the overflow probability ξ1(w, z) depends on w and z through z − w and z − d.

3.2. Overflow probability when w ≤ d

If the initial workload of the process {W(t), t ≥ 0} is below d, then the server starts to serve at rate p2.
If this process starts at w ≤ d and is subsequently to exceed z, then {W2(t), t ≥ 0} must first exceed w,
because {W2(t), t ≥ 0} replicates {W(t), t ≥ 0} until they both up-cross w. Thus, by conditioning on
L∗w, we have

ξ2(w, z) = 1 − F(z − w) +
∫ d−w

0
ξ2(w + l, z) dF(l) +

∫ z−w

d−w
ξ1(w + l, z) dF(l)

= ρ2

∫ d−w

0
ξ2(w + l, z) dGe(l) + ρ2

(
1 −Ge(z − w) +

∫ z−w

d−w
ξ1(w + l, z) dGe(l)

)
. (3.6)

Theorem 2. If the initial value of w is less than or equal to d, then the overflow probability of the
workload process {W(t), t ≥ 0} is given by

ξ2(w, z) =
∫ d−w

0
η(z − w − l, d − w − l) dH2(l) + η(z − w, d − w),

where

η(z − w, d − w) := ρ2

(
1 −Ge(z − w) +

∫ z−w

d−w
ξ1(w + l, z) dGe(l)

)
. (3.7)

Proof: Since ξ1(w, z) is determined by both z −w and z − d, it can be expressed in terms of z −w and
d − w. Thus we can write the right-side of (3.7) as a function of z − w and d − w. Substitute (3.7)
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into (3.6). We notice that the overflow probability ξ2(w, z) is also determined by z − w and d − w,
so it can be expressed as ξ2(w, z) := B(z − w, d − w) for some function B( · , · ). Let y = d − w and
h(y) := B(z − d + y, y). Then we can rewrite (3.6) as

h(y) = ρ2

∫ y

0
h(y − l)dGe(l) + η(z − d + y, y),

which is a type of renewal equation. Asmussen (2003, p.146) showed that the unique solution to this
renewal equation is given by

h(y) =
∫ y

0
η(z − d + y − l, y − l) dH2(l) + η(z − d + y, y),

where H2(x) =
∑∞

n=0 ρ
n
2G∗ne (x) with ρ2 = λm/p2. Thus it follows that

ξ2(w, z) =
∫ d−w

0
η(z − w − l, d − w − l) dH2(l) + η(z − w, d − w).

�

4. Ruin Probabilities

We will now use overflow probability ξ(w, z) to obtain the ruin probability ψ(u) of the compound
Poisson risk model with a two-step premium rule. If we let u := z − w and b := z − d, then for t ≥ 0,
we have

U(t) ≡ z −W(t)

and then ψ(u) = ξ(w, z). Thus it follows that

ψ1(u) := ψ(u)|0≤u<b

= ξ1(w, z)

= 1 − θ2H1(u)
(1 + θ1) − (θ1 − θ2)H1(b)

and

ψ2(u) := ψ(u)|u≥b

= ξ2(w, z)

=

∫ u−b

0
ζ(u − l) dH2(l) + ζ(u),

where

ζ(u) :=
1

1 + θ2

[∫ u

u−b
ψ1(u − l) dGe(l) + 1 −Ge(u)

]
,

because pi = λm(1 + θi). These results are consistent with the ruin probability obtained by Lin and
Pavlova (2006).
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Example 1. We assume that the size of each claim is exponentially distributed with mean m. Then
for i = 1, 2 we have

Hi(x) =
1 + θi − e−γi x

θi
,

where γi := θi/{m(1 + θi)}. Thus it follows that

ψ1(u) = 1 − θ2(1 + θ1 − e−γ1u)
(1 + θ1)θ2 + (θ1 − θ2)e−γ1b , 0 ≤ u < b.

Since Ge(x) = 1 − exp(−x/m), we obtain

ζ(u) =
θ1e−[γ1b+ 1

m (u−b)]

(1 + θ1)θ2 + (θ1 − θ2)e−γ1b

and then

ψ2(u) =
θ1e−[γ1b+γ2(u−b)]

(1 + θ1)θ2 + (θ1 − θ2)e−γ1b , u ≥ b.
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