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Abstract
We propose a sequential method to construct approximate confidence limits for the ratio of two independent

sequences of binomial variates with unequal sample sizes. Due to the nonexistence of an unbiased estimator for
the ratio, we develop the procedure based on a modified maximum likelihood estimator (MLE). We generalize
the results of Cho and Govindarajulu (2008) by defining the sample-ratio when sample sizes are not equal. In
addition, we investigate the large-sample properties of the proposed estimator and its finite sample behavior
through numerical studies, and we make comparisons from the sample information view points.

Keywords: Approximate confidence limits, ratio of two binomial proportions, modified MLE, sample-
ratio, large-sample properties.

1. Introduction

The ratio of two binomial proportions and constructing its confidence interval represents an important
tool to measure risk ratio (Katz et al., 1978; Bailey, 1987) or relative risk (Gart, 1985; Gart and Nam,
1988) in comparative prospective studies and in biomedical experiments. The ratio or odds ratio of
two binomial proportions is also related to vaccine efficacy and attributable risk (Walter, 1976), which
arises frequently in epidemiological problems (e.g. cohort study involving two groups).

Among sequential methods for constructing an interval for an unknown parameter based on the
fixed-sample size, Ray (1957) and Starr (1966) studied the fixed-width confidence interval for the
mean of a normal distribution. Khan (1969) explored a general method to determine stopping rules to
obtain a fixed-width confidence interval for an unknown parameter involving some possible unknown
nuisance parameters. In addition, Siegmund (1982) investigated a sequential confidence interval for
the odds ratio.

The article is organized as follows. In Section 2, we begin with the notations and describe the
characteristics of the problem and the proposed method. In Section 3, we study the desirable properties
of the proposed estimator in terms of asymptotics. In Section 4, we examine the properties of the
proposed procedure. Then, finally in Section 5, we illustrate the procedure with the Monte Carlo
examples to make brief comparisons and summarize our conclusions with further remarks.

2. Formulation

Suppose that X1, X2, . . . and Y1,Y2, . . . are two independent sequences of Bernoulli random variables
with probabilities 0 < p0 < 1 and 0 < p1 < 1, respectively. Define a ratio, θ = p1/p0. With samples
of size n on X and n1 on Y , let R =

∑n
i=1 Xi and S =

∑n1
j=1 Y j, assuming that n1 = κ · n such that κ · n is
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an integer and κ is known. We call the constant κ(= n1/n) the sample-ratio. We want to find optimal
values of n (and n1) and construct an interval having specified width 2d and confidence coefficient γ

P
{∣∣∣θ̂ − θ∣∣∣ ≤ d

}
≥ γ. (2.1)

Then, R and S are two independent binomial random variables with parameters (n, p0) and (n1, p1),
respectively. Since there does not exist an unbiased estimator of the ratio θ, we consider a modified
estimator

θ̂n =
1
κ

(
S + 1/2
R + 1/2

)
. (2.2)

When we observe R = r and S = s, the likelihood (of θ and p0) is

L (θ, p0) =
(
n
r

)(
n1

s

)
pr+s

0 (1 − p0)n−r θs (1 − p0θ)n1−s (2.3)

in which p1 = p0θ. From the log-likelihood function of θ and p0,l (θ, p0), we have the following
maximum likelihood estimates:

p̂0,n =
r
n

and since θ̂mle = (1/κ)(S/R) = nS/n1R, we have

θ̂mle =
s

n1 p̂0
.

Furthermore, the Fisher information about θ is given by

E
[
−∂

2l (θ, p0)
∂θ2

]
=

n1 p0

θ (1 − θp0)
, (2.4)

and the information about p0 is given by

E
−∂2l (θ, p0)

∂p2
0

 = n
p0(1 − p0)

+
n1θ

p0(1 − p0)
. (2.5)

Similarly, the joint information about θ and p0 is

E
[
−∂

2l (θ, p0)
∂θ∂p0

]
=

n1 (1 − p1)
1 − p1

+
n1 (1 − p1) p1

(1 − p1)2 =
n1

1 − θp0
. (2.6)

It follows from Equations (2.4)–(2.6), the information matrix about (θ, p0) denoted by I (θ, p0), is
then

I (θ, p0) =


n1 p0

θ (1 − θp0)
n1

1 − θp0
n1

1 − θp0

n
p0(1 − p0)

+
n1θ

p0(1 − p0)

 , (2.7)
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and the determinant of the information matrix, det I becomes

det I =
n1n

θ (1 − p0) (1 − θp0)
.

Hence, from the inverse of I, namely, I−1 we have the asymptotic variance of θ̂mle

var
(
θ̂mle

)
=
θ (1 − p0) (1 − θp0)

n1n

[
n

p0(1 − p0)
+

n1θ

p0(1 − p0)

]
=
θ(1 − p0θ)

n1 p0
+
θ2(1 − p0)

np0
. (2.8)

For the special case n1 = n, Equation (2.8) reduces to

var
(
θ̂mle

)
=
θ(1 − p0θ) + θ2(1 − p0)

np0
=
θ(1 + θ − 2θp0)

np0
,

which coincides with the result obtained in Cho and Govindarajulu (2008, Equation (1.10)).

3. Properties of the Estimator θ̂nθ̂nθ̂n

In this section, we investigate the desirable properties of the modified estimator θ̂n for the proposed
procedure. Even though, there is no unbiased estimator of the true ratio θ, the modified estimator is
asymptotically unbiased and so θ̂mle is. Therefore, we must show the asymptotic equivalence of the
estimators, θ̂n and θ̂mle through their variances.

3.1. Asymptotic unbiasedness of θ̂n

Consider the expectation of θ̂n. That is,

E
(
θ̂n

)
=

1
κ

E
(

S + 1/2
R + 1/2

)
=

1
κ

E
(
S +

1
2

)
E

(
1

R + 1/2

)
. (3.1)

In order to expand, we can rewrite

E
(

1
R + 1/2

)
= E

(
1

np0 + R − np0 + 1/2

)
=

1
np0

E

(1 + R − np0 + 1/2
np0

)−1 .
Then, after algebraic simplification

E
(

1
R + 1/2

)
=

1
np0

E

1 − (
R − np0 + 1/2

np0

)
+

(
R − np0 + 1/2

np0

)2

+ · · ·


=
1

np0

[
1 − 1

2np0
+

np0 (1 − p0)
(np0)2 +

1
4 (np0)2 + · · ·

]
. (3.2)
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Combining Equations (3.1) and (3.2), we have

E
(
θ̂n

)
=

1
κ

(
n1 p1 +

1
2

) {
1

np0

[
1 − 1

2np0
+

np0 (1 − p0)
(np0)2 +

1
4 (np0)2 + · · ·

]}
=

1
κ

{
n1 p1

np0

[
1 − 1

2np0
+

np0 (1 − p0)
(np0)2 +

1
4 (np0)2 + · · ·

]
+

1
2np0

[
1 − 1

2np0
+

np0 (1 − p0)
(np0)2 +

1
4 (np0)2 + · · ·

]}
=

1
κ

{
n1 p1

np0

[
1 − O

(
n−2

)]
+

1
2np0

[
1 − O

(
n−2

)]}
.

Therefore, for sufficiently large n

E
(
θ̂n

)
≃ 1
κ

(κn)p1

np0
=

p1

p0
= θ. (3.3)

Thus, θ̂n is an asymptotically unbiased estimator of θ.
Next, we investigate the variance of the modified estimator θ̂n.

3.2. Asymptotic variance of θ̂n

Now, we obtain the asymptotic variance of θ̂n = κ
−1(S + 1/2)/(R + 1/2) assuming that κn = n1 is an

integer.

Theorem 1.

lim
n→∞

nVar
(
θ̂n

)
=
θ(1 − p0θ)

κp0
+
θ2(1 − p0)

p0
=
θ(1 − p0θ) + κθ2(1 − p0)

κp0
.

Proof: Noting that

var
(
θ̂n

)
=

1
κ2 var

(
S + 1/2
R + 1/2

)
,

refer directly to Theorem 1.1 in Cho and Govindarajulu (2008). �

3.3. Asymptotic normality of θ̂n

From the modified ratio given in Equation (2.2), we have

√
κn

(
S/n1 + 1/2n1

R/n + 1/2n
− θ

)
=
√
κn

(
p̂1,n + 1/2n1

p̂0,n + 1/2n
− θ

)
=
√
κn

{
p̂1,n − p1 + p1 + 1/2n1 − θ( p̂0,n + 1/2n)

p̂0,n + 1/2n

}
=
√
κn

{
p̂1,n − p1 + 1/2n1 − θ(p̂0,n − p0 + 1/2n)

p̂0,n + 1/2n

}
=
√
κn

(
p̂1,n − p1

p0

)
− θ
√
κn

(
p̂0,n − p0

p0

)
+ op(1),
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where p̂0,n = r/n and p̂1,n = s/n. For sufficiently large n and from Slutsky’s theorem, the above
modification transforms to

√
κn

(
θ̂n − θ

) d≃ N
{

0,
θ(1 − p1)

p0
+
κθ2(1 − p0)

p0

}
≡ N

(
0, σ2

)
, (3.3)

where

σ2 =
θ {1 − θp0 + θκ(1 − p0)}

p0
=
θ {1 + θκ − θp0(1 + κ)}

p0
.

Now we consider determining n such that

P
{∣∣∣θ̂ − θ∣∣∣ ≤ d

}
= P


√
κn

∣∣∣θ̂ − θ∣∣∣
σ

≤ d
√
κn
σ

 ≥ γ.
Thus,

2Φ
(

d
√
κn
σ

)
− 1 ≥ γ,

or

d
√
κn
σ
≥ z (1+γ)

2
= z (say),

for specified d (> 0) where Φ
(
z(1+γ)/2

)
= (1 + γ) /2.

Hence,

n ≥ κ−1
( zσ

d

)2
.

Moreover, the optimal fixed-sample size for the procedure becomes the smallest integer n∗ such that
n ≤ n∗ ≤ n + 1, for estimating θ with specified d and z. That is,

n∗ =
⌊
κ−1

( zσ
d

)2
⌋
+ 1, (3.4)

where ⌊·⌋ indicates the greatest integer function.
However, since both θ and p0 are unknown, we resort to the following adaptive sequential rule:

We stop sampling after N observations on X, and κN observations on Y where

N = inf
n

{
n ≥ m : n ≥ κ−1z2σ̂2

n

d2

}
, (3.5)

where m (≥ 2) is the initial sample size, σ̂2
n = θ̂n

{
1 + κθ̂n − θ̂n p̂0,n(1 + κ)

}
and p̂0,n = (R + 1/2)/n.

Upon stopping we give the γ × 100% confidence interval estimate of length 2d for θ as(
θ̂N − d, θ̂N + d

)
.
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4. Asymptotic Properties of the Procedure

In this section we investigate the asymptotic behavior of the proposed sequential procedure and vari-
ous properties of the (random) stopping time N.

4.1. Finite sure termination

Toward its finite sure termination, we have the following theorem:

Theorem 2. Let N be the stopping time associated with the sequential procedure. Then P{N < ∞}
= 1.

Proof: Using the stopping rule in Equation (3.5)

P {N = ∞} = lim
n→∞

P {N > n}

≤ lim
n→∞

P
{

n ≤ κ−1
(

z2σ̂2
n

d2

)}
= 0

since σ̂2
n converges in probability to σ2 as n → ∞. Therefore, the proposed sequential procedure

terminates finitely with probability one. �

4.2. First order asymptotics

We apply the criteria given in Chow and Robbins (1965) to establish the asymptotic efficiency and
consistency of the procedure as d tends to zero.

The stopping rule given by Equation (3.5) can be written as

N = inf
n

{
n ≥ m :

n

κ−1θ (z/d)2 ≥
σ̂2

n

θ

}
, (4.1)

where σ̂2
n = θ̂n{1 + κθ̂n − θ̂n p̂0,n(1 + κ)}/p̂0,n.

From this, Equation (4.1) takes the form.

N = N(t) = min
n

{
n ≥ m : Yn ≤

g(n)
t

}
,

where

Yn =
θ̂n

θ

{
1 + κθ̂n − θ̂n p̂0,n(1 + κ)

1 + κθ − θp0(1 + κ)

} (
p0

p̂0,n

)
,

g(n) = n,

and

t = κ−1θ
( z
d

)2 {1 + κθ − θp0(1 + κ)}
p0

.

Thus, {Yn} is a sequence of random variables such that Yn > 0 almost surely (a.s.), limn→∞ Yn = 1
a.s. because p̂0,n converges a.s. to p0 and θ̂n/θ converges a.s. to 1 as n → ∞. Additionally, we see
that g(n) → ∞ and g (n) /g (n − 1) → 1 as n → ∞. Since the stopping rule N is well-defined and
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non-decreasing as a function of t, we can apply the results of Chow and Robbins (1965) and obtain
the first order asymptotics for the proposed sequential procedure.

Theorem 3.

(i) limd→0 N = ∞ a.s.,

(ii) limd→0 N/n∗ = 1 a.s.,

(iii) limd→0 P
{∣∣∣θ̂N − θ

∣∣∣ ≤ d
}
= γ.

Proof: For (i) and (ii) proceed as in Cho and Govindarajulu (2008). For the proof of (iii), since
N/n∗ converges in probability to one,

√
n∗( p̂0,N − p0) is asymptotically normal with mean zero and

variance p0(1 − p0). Furthermore since N/n∗ converges in probability to one,
√
κn∗(p̂1,κN − p1)) is

asymptotically normal with mean zero and variance p1(1 − p1). Then, from Anscombe’s theorem
(1952), it follows that p̂0,N converges in probability to p0. Using Slutsky’s theorem, we infer that

√
n∗

(
θ̂N − θ

) d≃
√

n∗
{(

p̂1,N − p1
)

p0
− θ

(
p̂0,N − p0

)
p0

}
. (4.2)

Applying the Anscombe’s condition specialized for sums of independent and identically distributed
(i.i.d.) random variables on the right-hand side in (4.2), it follows that

√
n∗

(
θ̂N − θ

)
is asymptotically

N
(
0, σ2

)
where σ2 = θ {1 + θκ − θp0(1 + κ)} /p0. Therefore, we have

P
{∣∣∣θ̂N − θ

∣∣∣ ≤ d
}
= P


√

n∗
∣∣∣θ̂N − θ

∣∣∣
σ

≤ d
√

n∗

σ

 = γ
as d → 0, and hence, Theorem 3 is proved. �

Next, we assert the asymptotic efficiency of the proposed sequential procedure by proceeding as
in Cho and Govindarajulu (2008).

5. Numerical Studies

5.1. Simulation setup

A Monte Carlo experiment is used to investigate the behavior and performance of the stopping rule in
the proposed sequential procedure. The results of the experimentation are summarized in the follow-
ing tables, which show the values of the parameter θ, namely θ = 1.0, 1.5, 2.0 and 4.0 with selected
values of p0, p1, and the sample-ratio κ, 0 < κ ≤ 1. For instance, κ = 1 means that both sample sizes
n and n1 are taken equally. If κ = 0.8, the sample of Xi has taken 25% more than Y j’s, and if κ = 0.5,
the sample size of Xi is two times more than Y j’s and so on. Without loss of generality (WLOG) we
can assume that p0 ≤ p1 and hence consider only situations in which θ ≥ 1 because the roles of X and
Y can be interchanged when θ ≤ 1. Further since p0 ≤ p1, we expect to sample more from the rare
population, WLOG, we can assume that κ ≤ 1 for simulation purposes.

In the table, every value in each row is based on 5,000 independent replications with initial sample
size m = 10 for each experiment. Using the sample ratio κ = n/n1 = 0.8 or 0.5, we present the
coverage probability (CP) of the interval θ̂ ± d, and the expected stopping time and optimal sample
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Table 1: θ = 1.0 with p0 = 0.5 and p1 = 0.5

γ d κ = 0.8 κ = 0.5 y j
θ̂ CP E(N) n∗ θ̂ CP E(N) n∗ E(N1) n∗1

.2 1.002 .890 163.08 169 .998 .921 262.96 271 132.25 136
.90 .3 .999 .852 68.27 76 .996 .885 111.76 121 56.66 61

.4 .998 .838 36.12 43 .993 .849 58.84 68 30.35 34

.3 1.000 .941 234.04 241 1.001 .968 378.94 385 190.22 193
.95 .4 1.002 .922 100.37 107 .999 .946 162.83 171 82.17 86

.5 .996 .879 52.69 61 .998 .915 87.14 96 44.38 49

Table 2: θ = 1.5 with p0 = 0.4 and p1 = 0.6

γ d κ = 0.8 κ = 0.5 y j
θ̂ CP E(N) n∗ θ̂ CP E(N) n∗ E(N1) n∗1

.3 1.499 .882 173.54 184 1.502 .939 283.96 294 142.74 147
.90 .4 1.503 .832 92.43 104 1.500 .901 154.10 166 77.83 83

.5 1.496 .804 55.24 66 1.499 .875 94.06 106 47.91 53

.3 1.498 .942 250.44 260 1.503 .973 408.86 417 205.19 208
.95 .4 1.504 .914 136.84 147 1.504 .960 225.63 235 113.58 117

.5 1.504 .874 83.28 94 1.503 .936 139.17 150 70.37 75

Table 3: θ = 2.0 with p0 = 0.3 and p1 = 0.6

γ d κ = 0.8 κ = 0.5 y j
θ̂ CP E(N) n∗ θ̂ CP E(N) n∗ E(N1) n∗1

.4 1.999 .875 238.63 254 1.998 .937 391.29 406 196.41 203
.90 .5 1.994 .825 144.17 162 2.000 .915 243.56 260 122.56 131

.6 2.000 .787 95.88 113 1.998 .879 162.17 181 81.93 90

.4 2.001 .937 347.48 361 2.004 .975 566.44 578 283.98 289
.95 .5 2.000 .907 214.58 231 2.001 .958 354.56 370 178.05 185

.6 1.994 .874 141.71 160 1.997 .942 239.21 256 120.38 128

Table 4: θ = 4.0 with p0 = 0.2 and p1 = 0.8

γ d κ = 0.8 κ = 0.5 y j
θ̂ CP E(N) n∗ θ̂ CP E(N) n∗ E(N1) n∗1

.6 3.995 .899 613.60 638 3.998 .961 1000.16 1022 500.84 511
.90 .7 4.010 .874 446.07 471 3.996 .951 726.09 751 363.82 376

.8 3.987 .856 326.70 359 4.010 .940 553.74 577 277.65 288

.6 3.995 .953 884.72 906 4.000 .988 1433.33 1452 717.42 726
.95 .7 4.008 .946 650.37 668 4.002 .984 1047.57 1067 524.54 533

.8 3.999 .922 483.61 511 3.999 .979 793.87 816 397.69 408

size denoted by E (N) and n∗ for Xi’s, and E(N1) and n∗1 for Y j’s, respectively. The nominal level of
confidence γ for the interval is .90 or .95 for each value of θ.

From Table 1 to Table 4, we observe that the expected stopping time E (N) monotonically in-
creases (to infinity) as the sample ratio κ becomes smaller (i.e., sample of xi’s getting more) or d
decreases (to zero). We observe that as d decreases the coverage probability (CP) is getting close
(eventually) to the nominal probability γ, which is referred to as asymptotic consistency. It should be
noted that if one takes Xi’s (or Y j’s) more, then the CP is comparatively higher than the one in equal
sample sizes. Therefore, the above numerical evidence indicates that the finite-sample behavior lends
support to the asymptotic behavior of the proposed sequential procedure when d → 0.

Increasing the starting sample size m results in the increase of both E (N) and CP. Accordingly,
when the CP is below the nominal level, choosing a moderate size of m is a trade-off for obtaining a
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Table 5: θ = 2.0 with p0 = 0.3 and p1 = 0.6
Sample-Ratio d = 0.4 γ = 0.90 Xi ∼ Ber(p0) Y j ∼ Ber(p1)
κ = n∗1/n

∗ θ̂ ± d CP E(N) n∗ E(N1) n∗1
(1) κ = 1 (1.599, 2.399) 0.841 196.41 203 196.41 203
(2) κ = 0.8 (1.599, 2.399) 0.875 238.63 254 196.41 203
(3) κ = 0.5 (1.598, 2.398) 0.937 391.29 406 196.41 203

Table 6: θ = 4.0 with p0 = 0.2 and p1 = 0.8
Sample-Ratio d = 0.7 γ = 0.95 Xi ∼ Ber(p1) Y j ∼ Ber(p0)
κ = n∗1/n

∗ θ̂ ± d CP E(N) n∗ E(N1) n∗1
(1) κ = 1 (3.305, 4.705) 0.902 524.54 533 524.54 533
(2) κ = 0.8 (3.308, 4.708) 0.946 650.37 668 524.54 533
(3) κ = 0.5 (3.302, 4.702) 0.984 1047.57 1067 524.54 533

higher coverage probability. For practical purposes, the size of d can be determined from the standard
error (S.E.) of the estimate θ̂.

5.2. Comparison: Equal-sample sizes versus Unequal-sample sizes

In this subsection we compare the results from the unequal-sample sizes with values of the sample-
ratio κ = 0.8 and κ = 0.5 with the results from the equal-sample sizes (κ = 1) on x and y. For brevity,
we summarize and present part of the results in the following two tables, Tables 5–6 for θ = 2.0 with
90% nominal level and θ = 4.0 with 95% nominal level, respectively. Each table shows three values
of κ, the coverage probability (CP), and the expected stopping times E(N) for each values of κ.

From the above tables, as the sample-ratio κ decreases (i.e., take more samples with smaller p) we
observe that the coverage probability (CP) for the interval of width 2d improves. For instance, when
sample-ratio κ = 0.8, comparing to the equal sample sizes (κ = 1), the CPs have increased by 3.4%
points for γ = 0.90 and 4.4% points for γ = 0.95, respectively. Therefore, for a more stable estimation
of the ratio for two binomial variates it is reasonable to take more samples from the population having
smaller probability p even though the equal-sample sizes minimize the expected stopping times..

The expected stopping time E(N) is uniformly bigger than E(N1) when κ < 1. At the same time,
it seems to be generally true that κ < 1 gives the higher CP than the one with equal-sample sizes;
however, we need to note that eventually the CP approaches the nominal level γ as d gets smaller.
From these, we surmise that reducing variability (in the denominator of the statistic used) by taking
(reasonably) more samples (i.e., getting ‘more’ information from the rare population) seems to be fair
and is a better idea for a more stable estimation of the true ratio θ.

5.3. Concluding remarks

We have proposed a sequential method to obtain the approximate confidence limits for the ratio of
two binomial variates that may have unequal sample sizes. The proposed method offers a relatively
new perspective on the information aspects. The procedure is developed based on a modified MLE in
terms of the sample-ratio κ; subsequently, the large-sample properties of the proposed estimator are
investigated. The finite sample behavior was verified through numerical studies. In addition, by com-
paring the expected stopping times and the coverage probabilities of the intervals, it is recommended
to take more samples from the rare population to have more precise intervals for the ratio parameter
θ = p1/p0.

We also note that it might be preferred to have a confidence interval based on the likelihood-ratio
since it would be invariant. Future studies should include dealing with advantages and disadvantages
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in practical usages between two approaches even though they are not completely comparable.
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