DOI QR코드

DOI QR Code

Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells

고분자전해질 연료전지용 Poly(arylene ether sulfone) 막의 특성

  • 정재진 (순천대학교 화학공학과) ;
  • 신용철 (코오롱인더스트(주) Eco연구소 중앙기술원) ;
  • 이무석 (코오롱인더스트(주) Eco연구소 중앙기술원) ;
  • 이동훈 (코오롱인더스트(주) Eco연구소 중앙기술원) ;
  • 나일채 ((주)CNL Energy) ;
  • 이호 ((주)CNL Energy) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2013.07.19
  • Accepted : 2013.08.16
  • Published : 2013.10.01

Abstract

Recently, there are many efforts focused on development of more economical non-fluorinated membranes for use in PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, characteristics of poly(arylene ether sulfone)(PAES) were compared with fluorinated membrane at PEMFC operation condition. I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. PAES membrane showed similar performance compared with fluorinated membrane at 100% relative humidity, but the performance of PAES membrane decreased largely due to low ionic conductivity at low relative humidity.

최근에 저가의 고분자전해질 연료전지(Proton Exchange Membrane Fuel Cells, PEMFC)용 비불소계 전해질 막 연구개발이 활발히 진행되고 있다. 본 연구에서는 PEMFC 운전 조건에서 Poly(arylene ether sulfone)(PAES) 막과 불소계막의 특성을 비교하였다. I-V 분극곡선, 수소투과도, 전기화학적 표면적, 막저항 및 부하 전달 저항 등을 측정 분석했다. PAES 막은 상대습도 100%에서는 불소계 막과 비슷한 성능을 보였으나 낮은 상대습도에서 이온전도도가 낮아 성능감소가 컸다.

Keywords

References

  1. Williams, M. C. Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  2. Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc, 149(7), S59-S67(2002). https://doi.org/10.1149/1.1488651
  3. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger A. Lamm (Eds.). Handbook of Fuel Cell: Fundamen,tals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc. 140, 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrog. Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005). https://doi.org/10.1149/1.1830355
  9. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Steel, B. C. H. and Heinzel, A., "Materials for Fuel-cell Technologies," Nature, 414, 345-352(2001). https://doi.org/10.1038/35104620
  11. Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R. and McGrath, J. E., "Alternative Polymer Systems for Proton Exchange Membranes (PEMs)," Chem. Rev. 104, 4587-4612(2004). https://doi.org/10.1021/cr020711a
  12. Hill, M. L., Kim, Y. S., Einsla, B. R. and McGrath, J. E., "Zirconium Hydrogen Phosphate/disulfonated Poly(arylene ether sulfone) Copolymer Composite Membranes for Proton Exchange Membrane Fuel Cells," J. Membr. Sci. 283 102-108(2006). https://doi.org/10.1016/j.memsci.2006.06.016
  13. Neburchilov, V., Martin, J., Wang, H. and Zhang, J., "A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells," J. Power Sources, 169, 221-238 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.044
  14. So, S. Y., Yoon, Y. J., Kim, T. H., Yoon, K. S. and Hong, Y. T., "Sulfonated Poly(arylene ether sulfone)/functionalized Silicate Hybrid Proton Conductors for High-temperature Proton Exchange Membrane Fuel Cells," J. Membr. Sci., 381, 204-210 (2011). https://doi.org/10.1016/j.memsci.2011.07.024
  15. Park, J. Y., Kim, T. H., Kim, H. J., Choi, J. H. and Hong, Y. T., "Crosslinked Sulfonated Poly(arylene ether sulfone) Membranes for Fuel Cell Application," Int. J. Hydrog. Energy, 37, 2603-2613 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.122
  16. Lawrencea, J. and Yamaguchia, T., "The Degradation Mechanism of Sulfonated Poly(arylene ether sulfone)s in An Oxidative Environment," J. Membr. Sci., 325, 633-640(2008). https://doi.org/10.1016/j.memsci.2008.08.027
  17. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  18. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68

Cited by

  1. Decal Transfer Method of Hydrocarbon Membranes for Fabricating a Membrane Electrode Assembly (MEA) vol.13, pp.3, 2017, https://doi.org/10.7849/ksnre.2017.9.13.3.051
  2. 직접개미산 연료전지용 전해질막으로서 sPAES 막과 sPEEK 막의 특성 vol.53, pp.6, 2013, https://doi.org/10.9713/kcer.2015.53.6.690
  3. 돼지 분뇨와 sPAES 막을 이용한 미생물 연료전지의 특성 vol.54, pp.4, 2013, https://doi.org/10.9713/kcer.2016.54.4.453
  4. sPEEK 막으로 제조한 고분자전해질 연료전지(PEMFC) 막전극합체(MEA)의 특성 vol.54, pp.2, 2013, https://doi.org/10.9713/kcer.2016.54.2.181
  5. 고분자 전해질 연료전지에서 sPEEK 막을 이용한 전극과 막 합체(MEA)의 열화에 관한 연구 vol.54, pp.3, 2013, https://doi.org/10.9713/kcer.2016.54.3.305
  6. 고분자전해질 연료전지에서 고분자 막의 이온 전도도 vol.54, pp.5, 2013, https://doi.org/10.9713/kcer.2016.54.5.593
  7. 고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.296
  8. 고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성 vol.55, pp.4, 2013, https://doi.org/10.9713/kcer.2017.55.4.478