DOI QR코드

DOI QR Code

Optical and Electrical Properties of Sputtered Al Doped ZnO Thin Films with Various Working Pressure

공정 압력에 따라 스퍼터된 Al 도핑 ZnO 박막의 광학적, 전기적 특성

  • Kim, Deok Kyu (Advanced Development Team, Samsung Electronics Co. Ltd.) ;
  • Kim, Hong Bae (Department of Electronic and Information Engineering, Cheongju University)
  • Received : 2013.06.30
  • Accepted : 2013.07.30
  • Published : 2013.09.30

Abstract

We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films using RF magnetron sputtering with various working pressure. To find optimal properties of AZO for transparent conducting oxides, the working pressure in sputtering process was varied as 0.07 Torr, 0.02 Torr, and 0.007 Torr, respectively. As working pressure increased, the crystallinity of AZO thin film was improved, the surface roughness of AZO thin film decreased. The transmittance of the film was over 80% in the visible light range regardless of the changes in working pressure. In case of 0.007 Torr, best electrical properties was shown due to the reduction of oxygen absorption by decreasing surface roughness.

RF 마그네트론 스퍼터링법을 이용하여 Al 도핑 ZnO 박막을 공정 압력에 따라 증착하고 박막의 구조적, 광학적, 전기적 특성을 연구하였다. 공정 압력 의 최적화를 위해 공정압력을 0.07 Torr, 0.02 Torr, 그리고 0.007 Torr로 변화하였다. 공정압력이 감소하면서, Al 도핑 ZnO 박막의 결정성은 향상되었고 표면 거칠기도 감소하였다. 모든 Al 도핑 ZnO 박막은 가시광선 영역(400~800 nm)에서 80% 이상 투과도를 보였다. 0.007 Torr의 공정 압력에서 가장 좋은 전기적 특성을 보였는데 이는 표면거칠기 감소에 따른 산소 흡착이 감소하여 나타난 현상으로 판단된다.

Keywords

References

  1. Z. Y. Wang, L. Z. Hu, J. Zhao, J. Sun, and Z. J. Wang, Vacuum 78, 53 (2005). https://doi.org/10.1016/j.vacuum.2004.12.014
  2. G. Frank, E. Kauer, H. F. Kostlin J. Schmitte, Solar Energy Materials 8, 387 (1983). https://doi.org/10.1016/0165-1633(83)90004-7
  3. D. K. Kim and H. B. Kim, J. Korean Vac. Soc. 22, 20 (2013). https://doi.org/10.5757/JKVS.2013.22.1.20
  4. C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, IEEE Photon. Technol. Lett. 18, 274 (2006). https://doi.org/10.1109/LPT.2005.861987
  5. Y. H. Son, S. H. Choi, J. J. Park, M. H. Jung, Y. Hur, and I. S. Kim, J. Korean Vac. Soc. 22, 119 (2013). https://doi.org/10.5757/JKVS.2013.22.3.119
  6. S. Zafar, C. S. Ferekides, and D. L. Morel, J. Vac. Sci. Technol. A13, 2177 (1955).
  7. T. D. Kang, H. S. Lee, W. I. Park, and G. C. Yi, J. Korean Pyhs. Soc. 44, 129 (2004).
  8. M. S. Wang, E. J. Kim, J. S. Chung, E. W. Shin, S. H. Hahn, K. E. Lee, and C. H. Park, Phys. Stat. Sol. (a) 203, 2418 (2006). https://doi.org/10.1002/pssa.200521398
  9. K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys. 81, 7764 (1997). https://doi.org/10.1063/1.365556
  10. Y. Zhang, G. Du, and B. Liu, J. Cryst. Growth 262, 456 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.079
  11. D. H. Kong, W. C. Choi, Y. C. Shin, J. H. Park, and T. G. Kim, J. Korean. Phys. Soc. 48, 1214 (2006).
  12. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth 184/185, 605 (1998). https://doi.org/10.1016/S0022-0248(98)80127-9
  13. Y. M. Lu, W. S. Hwang, W. Y. Liu, and J. S. Yang, Mater. Chem. Phys. 72, 269 (2001). https://doi.org/10.1016/S0254-0584(01)00450-3
  14. B. D. Cullity, Element of X-ray Diffraction, (Addison-Wesley, 1978), p. 102.
  15. Y. Igasaki and H. Kanma, Appl. Surf. Sci. 169, 508 (2001).

Cited by

  1. Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source vol.25, pp.4, 2016, https://doi.org/10.5757/ASCT.2016.25.4.73