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MINIMAX PROBLEMS OF UNIFORMLY SAME-ORDER

SET-VALUED MAPPINGS

Yu Zhang and Shengjie Li

Abstract. In this paper, a class of set-valued mappings is introduced,
which is called uniformly same-order. For this sort of mappings, some
minimax problems, in which the minimization and the maximization of
set-valued mappings are taken in the sense of vector optimization, are
investigated without any hypotheses of convexity.

1. Introduction

Minimax problems are important in the areas of optimization theory and
game theory. As for optimization theory, the main motivation of studying sad-
dle point has been their connection with characterizing solutions to minimax
dual problems. Also, as for game theory, the main motivation has been the de-
termination of two-person zero-sum games based on the minimax principle. Li
[15] obtained a minimax theorem involving separable homogeneous polynomials
and established a Lagrangian duality theorem for the nonconvex separable ho-
mogeneous polynomial programming problem with bounded constraints. Park
[21] obtained a generalization of Nash equilibrium theorem by using the Ky
Fan minimax inequality. Because of its wide applications, minimax theorems
relative to scalar functions have been studied extensively (see [7, 8, 9, 14, 26]
and references therein).

In recent years, based on the development of vector optimization, a great
deal of papers have devoted to the study of minimax problems of vector-valued
mappings. Nieuwenhuis [20] introduced the notion of cone saddle points for
vector-valued functions in finite-dimensional spaces and obtained a cone sad-
dle point theorem for general vector-valued mappings. Besides, Nieuwenhuis
proved a minimax theorem when the vector-valued function is of the form
f(x, y) = x + y. Tanaka [24] obtained a minimax theorem of the separated
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vector-valued function. Shi and Ling [22] proved a minimax theorem and a
cone saddle point theorem for a class of vector-valued functions which includes
separated functions as its proper subset. Chen [4] obtained a Ky Fan mini-
max inequality for a vector-valued function on H-spaces by using a generalized
Fan’s section theorem. Chang et al. [3] proved a Ky Fan minimax inequality
for a vector-valued function on W-spaces. Yang et al. [25] established minimax
theorems for vector-valued mappings in abstract convex spaces. Gong [11] es-
tablished a strong minimax theorem and a strong cone saddle point theorem
of vector-valued functions. Li et al. [17] investigated a minimax theorem and a
saddle point theorem for vector-valued functions in the sense of lexicographic
order.

There are also many papers to investigate minimax problems of set-valued
mappings under some hypotheses of convexity. Luc and Vargas [19] obtained
a cone loose saddle point theorem for general set-valued mappings by using
a fixed point theorem and scalarization functions. Under weaker hypotheses,
Tan et al. [23] established a cone loose saddle point theorem for general set-
valued mappings. Kim et al. [13] proved a cone loose saddle point theorem
for general set-valued mappings by using the Fan-Browder fixed point theorem
and scalarization functions. Some other types of existence results on cone loose
saddle points for set-valued mappings can be found in [18] and [27]. Li et al. [16]
obtained some minimax inequalities for set-valued mappings by using a section
theorem and a linear scalarization function. Zhang et al. [28, 29] obtained
some minimax problems for general set-valued mappings by using some fixed
point theorems. Motivated by earlier work [13, 16, 17, 19, 22, 23, 27], we
introduce a class of set-valued mappings, which is called uniformly same-order.
For this sort of mappings, we investigate some minimax problems without any
hypotheses of convexity.

The rest of the paper is organized as follows. In Section 2, we introduce
notations and preliminary results. In Section 3, we investigate some prob-
lems for uniformly same-order set-valued mappings without any hypotheses of
convexity.

2. Preliminaries

Let X,Y and V be real Hausdorff topological vector spaces. Assume that
S is a pointed closed convex cone in V with its interior intS 6= ∅. Some
fundamental terminologies are presented as follows.

Definition 2.1. ([6, 12]) Let A ⊂ V be a nonempty subset.
(i) A point z ∈ A is said to be a minimal point of A if A

⋂

(z − S) = {z},
and MinA denotes the set of all minimal points of A.

(ii) A point z ∈ A is said to be a weakly minimal point of A if A
⋂

(z−intS) =
∅, and MinwA denotes the set of all weakly minimal points of A.

(iii) A point z ∈ A is said to be a maximal point of A if A
⋂

(z + S) = {z},
and MaxA denotes the set of all maximal points of A.
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(iv) A point z ∈ A is said to be a weakly maximal point of A if A
⋂

(z +
intS) = ∅, and Maxw denotes the set of all weakly maximal points of A.

It is easy to verity that

MinA ⊂ MinwA and MaxA ⊂ MaxwA.

Definition 2.2. ([1]) Let F : X → 2V be a set-valued mapping with nonempty
values.

(i) F is said to be upper semicontinuous (u.s.c.) at x0 ∈ X , if for any
neighborhood N(F (x0)) of F (x0), there exists a neighborhood N(x0) of x0

such that
F (x) ⊂ N(F (x0)), ∀x ∈ N(x0).

(ii) F is said to be lower semicontinuous (l.s.c.) at x0 ∈ X , if for any open
neighborhood N in V satisfying F (x0)

⋂

N 6= ∅, there exists a neighborhood
N(x0) of x0 such that

F (x)
⋂

N 6= ∅, ∀x ∈ N(x0).

(iii) F is said to be continuous at x0 ∈ X if F is both u.s.c. and l.s.c. at x0.

Proposition 2.1 ([2]). Let F : X → 2V be a set-valued mapping with nonempty

values.

(i) F is said to be u.s.c. on X if and only if for any closed subset G of V ,

the inverse image of G

F−1(G) = {x ∈ X | F (x)
⋂

G 6= ∅}

is closed.

(ii) F is said to be l.s.c. on X if and only if for any closed subset G of V ,

the core of G

F+1(G) = {x ∈ X | F (x) ⊂ G}

is closed.

Definition 2.3. ([19]) Let X0 and Y0 be two nonempty subsets of X and
Y , respectively, and F : X0 × Y0 → 2V be a set-valued mapping. A point
(x, y) ∈ X0 × Y0 is said to be a S-loose saddle point of F on X0 × Y0 if

F (x, y)
⋂

Min
⋃

y∈Y0

F (x, y) 6= ∅ and F (x, y)
⋂

Max
⋃

x∈X0

F (x, y) 6= ∅.

Lemma 2.1. Let X0 and Y0 be two nonempty compact subsets in X and Y

respectively. Suppose that F : X0×Y0 → 2V is a continuous set-valued mapping

and for each (x, y) ∈ X0 × Y0, F (x, y) is a nonempty compact set. Then,

Γ(x) = Minw
⋃

y∈Y0
F (x, y) and Φ(y) = Maxw

⋃

x∈X0
F (x, y) are u.s.c. and

compact-valued on X0 and Y0, respectively.

Proof. It follows from Lemma 2.2 in [16] that Γ and Φ are u.s.c.. By the
compactness of X0 and Y0, and the closeness of weakly minimal (maximal)
point sets, Γ and Φ are compact-valued. �
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Lemma 2.2 ([1]). Let X0 be a nonempty subset of X, and let F : X0 → 2V

be a set-valued mapping. If X0 is compact and F is upper semicontinuous and

compact-valued, then F (X0) =
⋃

x∈X0
F (x) is compact.

Lemma 2.3 ([10]). Let A ⊂ V be a nonempty compact subset. Then (i)
MinA 6= ∅; (ii) A ⊂ MinA+ S; (iii) MaxA 6= ∅; and (iv) A ⊂ MaxA− S.

3. Main results

From [17, 22], we introduce the definition of uniformly same-order set-valued
mappings.

Definition 3.1. Let X0 and Y0 be two nonempty subsets of X and Y , re-
spectively. Let F : X0 × Y0 → 2V be a set-valued mapping with nonempty
values. F (x, y) is said to be S(intS)-uniformly same-order on X0 with respect
to y0 ∈ Y0, if there exists x0 ∈ X0 such that

F (x0, y0) ⊂ F (x0, Y0) + S\{0V }(intS),

then for all x ∈ X0,

F (x, y0) ⊂ F (x, Y0) + S\{0V }(intS).

F is said to be S(intS)-uniformly same-order on X0 if F is S(intS)-uniformly
same-order on X0 with respect to any y0 ∈ Y0. The definition that F (x, y) is
said to be S(intS)-uniformly same-order on Y0 is similar.

The following example is given to show the rationality of the notation of
uniformly same-order set-valued mappings.

Example 3.1. Let X0 = {(x1, x2) | 1 ≤ xi ≤ 2(i = 1, 2)} ⊂ R
2, Y0 =

{(y1, y2) | 1 ≤ yi ≤ 2(i = 1, 2)} ⊂ R
2, V = R

2, S = R
2
+ and M = {(u, v) | u2 +

v2 ≤ 1}. Let
f(x, y) = (x1y1, x2y2)

and
F (x, y) = f(x, y) +M.

It is easy to show that F is S(intS)-uniformly same order on X0 × Y0.

Remark 3.1. Let u and v be two vector-valued mappings and M be a nonempty
subset of V . Obviously, the set-valued mapping F (x, y) = u(x) + v(y) +M is
S(intS)-uniformly same-order on X0 and Y0, respectively.

Remark 3.2. In [22], Shi and Ling gave a definition of S-uniformly same-order
on X0 for a vector-valued map f . When F reduces to a vector-valued mapping,
i.e., F ≡ f , we have that Definition 3.1 is a weaker concept than Definition 2.1
in [22]. In fact, if there exists x0 ∈ X0 such that

f(x0, y) ∈ f(x0, Y0) + S\{0V }, ∀y ∈ Y0.

Then, there exists ȳ ∈ Y0 such that

f(x0, y) ∈ f(x0, ȳ) + S\{0V }, ∀y ∈ Y0.
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By Definition 2.1 in [22], we have that for all x ∈ X0,

f(x, y) ∈ f(x, ȳ) + S\{0V }, ∀y ∈ Y0.

Naturally, for all x ∈ X0,

f(x, y) ∈ f(x, Y0) + S\{0V }, ∀y ∈ Y0.

So, if f is S-uniformly same-order on X0 (Y0) defined in [22], then f also
satisfies Definition 3.1. However, the converse may not hold. The following
example explains the case.

Example 3.2. Let X0 = [1, 2] ⊂ R, Y0 = [0, 1] ⊂ R, V = R
2 and S = R

2
+. Let

f : X0 × Y0 → V ,

f(x, y) =

{

(1,−4), if x = 1, y ∈ (0, 1];
(x2,−x2y), otherwise.

Obviously, f(x, y) is S-uniformly same-order on Y0 (Definition 3.1). However,
f(x, y) is not S-uniformly same-order on Y0 defined in [22]. Indeed, let y0 = 0,
x1 = 2 and x2 = 3

2
. By directly computing,

f(x1, y0)− f(x2, y0) = (4, 0)− (
9

4
, 0) = (

7

4
, 0) ∈ S\{0R2},

and for every y ∈ (0, 1],

f(x1, y)− f(x2, y) = (4,−4y)− (
9

4
,−

9

4
y) = (

7

4
,−

7

4
y) 6∈ S\{0R2}.

Lemma 3.1. Let X0 and Y0 be two nonempty subsets of X and Y , respectively,

and F : X0 × Y0 → 2V be a set-valued mapping with nonempty values.

(i) If F (x, y) is S-uniformly same-order on X0 and F (x̂, ŷ)
⋂

MinF (x̂, Y0)
6= ∅, then for each x ∈ X0, F (x, ŷ)

⋂

MinF (x, Y0) 6= ∅.
(ii) If −F (x, y) is S-uniformly same-order on Y0 and F (x̂, ŷ)

⋂

MaxF (X0, ŷ)
6= ∅, then for each y ∈ Y0, F (x̂, y)

⋂

MaxF (X0, y) 6= ∅.

Proof. (i) Let z ∈ F (x̂, ŷ)
⋂

MinF (x̂, Y0). If there exists x̄ ∈ X0 such that

(1) F (x̄, ŷ)
⋂

MinF (x̄, Y0) = ∅.

By (1), we have that for all z̄ ∈ F (x̄, ŷ), z̄ 6∈ MinF (x̄, Y0). Thus, there exists
z′ ∈ F (x̄, Y0) such that z̄ ∈ z′ + S\{0V }. Since F (x, y) is S-uniformly same-
order on X0, we have

(2) F (x̂, ŷ) ⊂ F (x̂, Y0) + S\{0V }.

For z ∈ F (x̂, ŷ), by (2), there exists ẑ ∈ F (x̂, Y0) such that z ∈ ẑ + S\{0V },
which contradicts z ∈ MinF (x̂, Y0).

(ii) Let z ∈ F (x̂, ŷ)
⋂

MaxF (X0, ŷ). If there exists ȳ ∈ Y0 such that

(3) F (x̂, ȳ)
⋂

MaxF (X0, ȳ) = ∅.
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By (3), we have that for all z̄ ∈ F (x̂, ȳ), z̄ 6∈ MaxF (X0, ȳ). Thus, there exists
z′ ∈ F (X0, ȳ) such that z̄ ∈ z′ − S\{0V }. Since −F (x, y) is S-uniformly same-
order on Y0, we have

(4) F (x̂, ŷ) ⊂ F (X0, ŷ)− S\{0V }.

For z ∈ F (x̂, ŷ), by (4), there exists ẑ ∈ F (X0, ŷ) such that z ∈ ẑ − S\{0V },
which contradicts z ∈ MaxF (X0, ŷ). �

Similar to the proof of Lemma 3.1, we can get the following lemma.

Lemma 3.2. Let X0 and Y0 be two nonempty subsets of X and Y , respectively,

and F : X0 × Y0 → 2V be a set-valued mapping with nonempty values.

(i) If F (x, y) is intS-uniformly same-order on X0 and

F (x̂, ŷ)
⋂

MinwF (x̂, Y0) 6= ∅,

then for each x ∈ X0, F (x, ŷ)
⋂

MinwF (x, Y0) 6= ∅.
(ii) If −F (x, y) is intS-uniformly same-order on Y0 and

F (x̂, ŷ)
⋂

MaxwF (X0, ŷ) 6= ∅,

then for each y ∈ Y0, F (x̂, y)
⋂

MaxwF (X0, y) 6= ∅.

In order to obtain existence theorems for cone loose saddle points of S-
uniformly same-order set-valued mappings, we introduce the following symbols:

A = {y ∈ Y0 | F (x, y)
⋂

MinF (x, Y0) 6= ∅, ∀x ∈ X0};

B = {x ∈ X0 | F (x, y)
⋂

MaxF (X0, y) 6= ∅, ∀y ∈ Y0};

Aw = {y ∈ Y0 |‘F (x, y)
⋂

MinwF (x, Y0) 6= ∅, ∀x ∈ X0};

Bw = {x ∈ X0 | F (x, y)
⋂

MaxwF (X0, y) 6= ∅, ∀y ∈ Y0}.

The set of all (weakly) S-loose saddle points of the S(intS)-uniformly same-
order set-valued mapping F with respect to X0 × Y0 is denoted by SP (SPw).

Theorem 3.1. Let X0 and Y0 be two nonempty compact subsets of X and Y ,

respectively. Suppose that F : X0 × Y0 → 2V is a set-valued mapping and the

following conditions are satisfied:
(i) F is u.s.c. with nonempty compact values;
(ii) F (·, y) is S-uniformly same-order on X0;
(iii) −F (x, ·) is S-uniformly same-order on Y0.

Then, F has a S-loose saddle point and SP = B ×A.

Proof. First, we prove that A 6= ∅ and B 6= ∅. Since F (x0, ·) is u.s.c. with com-
pact values and Y0 is compact, by Lemma 2.1, F (x0, Y0) is a compact set, for ev-
ery x0 ∈ X0. By Lemma 2.2, MinF (x0, Y0) 6= ∅. Let z0 ∈ MinF (x0, Y0). Then,
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there exists y0 ∈ Y0 such that z0 ∈ F (x0, y0). Thus, F (x0, y0)
⋂

MinF (x0, Y0) 6=
∅. By the condition (ii) and Lemma 3.1 (i), for all x ∈ X0,

F (x, y0)
⋂

MinF (x, Y0) 6= ∅.

Therefore, y0 ∈ A and A 6= ∅. Similarly, B 6= ∅.
Next, we show that SP = B × A. Clearly, B × A ⊂ SP . Let (x0, y0) ∈

SP . Then, F (x0, y0)
⋂

MinF (x0, Y0) 6= ∅ and F (x0, y0)
⋂

MaxF (X0, y0) 6= ∅.
Therefore, by the conditions (ii) and (iii), and Lemma 3.1, we have that for all
x ∈ X0,

F (x, y0)
⋂

MinF (x, Y0) 6= ∅

and for all y ∈ Y0,

F (x0, y)
⋂

MaxF (X0, y) 6= ∅.

Thus, y0 ∈ A and x0 ∈ B; that is, SP ⊂ B×A. Hence, SP = B×A 6= ∅. This
completes the proof. �

Remark 3.3. In [13, 19, 23, 27], some existence results on cone loose saddle
points of general set-valued mappings are investigated by applying various fixed
point theorems and scalarization functions. However, the method of the proof
and the conditions of Theorem 3.1 are different from the corresponding ones in
[13, 19, 23, 27], respectively.

Similar to the proof of Theorem 3.1, we can get the following theorem.

Theorem 3.2. Let X0 and Y0 be two nonempty compact subsets of X and Y ,

respectively. Suppose that F : X0 × Y0 → 2V is a set-valued mapping and the

following conditions are satisfied:
(i) F is u.s.c. with nonempty compact values;
(ii) F (·, y) is intS-uniformly same-order on X0;
(iii) −F (x, ·) is intS-uniformly same-order on Y0.

Then, F has a weakly S-loose saddle point and SPw = Bw ×Aw.

Theorem 3.3. Let X0 and Y0 be two nonempty compact subsets of X and Y ,

respectively. Suppose that F : X0 × Y0 → 2V is a set-valued mapping and the

following conditions are satisfied:
(i) F is continuous with nonempty compact values;
(ii) F (·, y) is intS-uniformly same-order on X0;
(iii) −F (x, ·) is intS-uniformly same-order on Y0.

Then, there exists (x̄, ȳ) ∈ X0 × Y0 such that

F (x̄, ȳ)
⋂

(Max
⋃

x∈X0

MinwF (x, Y0)− S) 6= ∅

and

F (x̄, ȳ)
⋂

(Min
⋃

y∈Y0

MaxwF (X0, y) + S) 6= ∅.
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Proof. By assumptions and Lemmas 2.1-2.3,

Min
⋃

y∈Y0

MaxwF (X0, y) 6= ∅ and Max
⋃

x∈X0

MinwF (x, Y0) 6= ∅.

By Theorem 3.2, there exists (x̄, ȳ) ∈ X0 × Y0 such that

F (x̄, ȳ)
⋂

MinwF (x̄, Y0) 6= ∅ and F (x̄, ȳ)
⋂

MaxwF (X0, ȳ) 6= ∅.

Then,

F (x̄, ȳ)
⋂

(
⋃

x∈X0

MinwF (x, Y0)) 6= ∅ and F (x̄, ȳ)
⋂

(
⋃

y∈Y0

MaxwF (X0, y)) 6= ∅.

By Lemma 2.3, we have

F (x̄, ȳ)
⋂

(Max
⋃

x∈X0

MinwF (x, Y0)− S) 6= ∅

and

F (x̄, ȳ)
⋂

(Min
⋃

y∈Y0

MaxwF (X0, y) + S) 6= ∅.

This completes the proof. �

Remark 3.4. When F is a real-valued function and S = R+, the conclusions of
Theorem 3.3 reduce to

min
⋃

y∈Y0

maxF (X0, y) ≤ max
⋃

x∈X0

minF (x, Y0);

namely,

min
⋃

y∈Y0

maxF (X0, y) = max
⋃

x∈X0

minF (x, Y0).

So, Theorem 3.3 is an extension for the minimax theorem of real-valued func-
tions.

In all the sequel of this section, we suppose that X and Y are two metric
spaces, and S is a point closed convex cone in Rn with its interior intS 6= ∅.

Definition 3.2. ([5]) Let M be a nonempty subset of Rn. M is said to be
S-bounded if there exist z1, z2 ∈ V such that

M ⊂ (z1 + S)
⋂

(z2 − S).

Lemma 3.3. Let X0 be a nonempty compact subset of X. Let F : X0 → 2R
n

be a set-valued mapping satisfying F (x) = f(x) +M , where f : X0 → Rn is a

vector-valued mapping.

(i) If f is a continuous vector-valued mapping on X0, and M is a nonempty

S-bounded closed subset of Rn, then F is u.s.c. on X0.

(ii) If f is a continuous vector-valued mapping on X0, then F is l.s.c. on

X0.
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Proof. (i) By Proposition 2.1, we only need to prove that for any closed subset
G of Rn, the inverse image of G

F−1(G) = {x ∈ X0 | (f(x) +M)
⋂

G 6= ∅}

is closed. Let xn ∈ F−1(G) and xn → x0 ∈ X0. By the definition of F−1(G),
(f(xn) + M)

⋂

G 6= ∅. Then, for any n, there exists mn ∈ M such that
f(xn) +mn ∈ G. Since M is a S-bounded closed set, there exists a converging
subsequence {mnk

} of {mn} and mnk
→ m0 ∈ M . By the closedness of G,

f(x0) +m0 ∈ G, i.e.,

x0 ∈ F−1(G) = {x ∈ X0 | (f(x) +M)
⋂

G 6= ∅}

and hence F is u.s.c. on X0.
(ii) By Proposition 2.1, we only need to prove that for any closed subset G

of Rn, the core of G

F+1(G) = {x ∈ X0 | f(x) +M ⊂ G}

is closed. Let xn ∈ F+1(G) and xn → x0 ∈ X0. By the definition of F+1(G),
f(xn) ∈ G−m, for all m ∈ M . Since G is a closed set, f(x0) ∈ G−m, for all
m ∈ M . By the arbitrary of m, f(x0) +M ⊂ G, i.e.,

x0 ∈ F+1(G) = {x ∈ X0 | f(x) +M ⊂ G}

and hence F is l.s.c. on X0. �

The following simple example shows that if M is not S-bounded, Lemma
3.3(i) is not true.

Example 3.3. Let X = R, V = R
2, X0 = [−1, 1] ⊂ X , S = R

2
+, and

M = {(0, t) | ∀t ∈ R}. Let f : X0 → V and F : X0 → 2V ,

f(x) = (x, 0) for x ∈ [−1, 1]

and
F (x) = f(x) +M.

Obviously, f is continuous, and M is a closed set. But M is not R2
+-bounded.

We claim that F is not u.s.c. for every x ∈ X0. In fact, for every t ∈ [−1, 1],

N(F (t)) = {(x, y) : |y| <
1

|x− t|
}

is a neighborhood of F (t). For all the neighborhood N(t) of t, there exists
t0 ∈ N(t) such that F (t0) 6⊂ N(F (t)). Clearly, by the definition of the u.s.c. of
set-valued mappings, F is not u.s.c. for each t ∈ [−1, 1].

Similarly, in order to obtain existence theorems for cone loose saddle points
of the class of set-valued mappings F (x, y) = u(x) + v(y) + M , where u and
v are two vector-valued mappings and M is a fixed set, we also introduce the
following symbols:

A′

w = {y ∈ Y0 | (v(y) +M)
⋂

Minw(v(Y0) +M) 6= ∅};
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B′

w = {x ∈ X0 | (u(x) +M)
⋂

Maxw(u(X0) +M) 6= ∅}.

The set of all weakly S-loose saddle points of F (x, y) = u(x) + v(y) +M with
respect to X0 × Y0 is denoted by SP ′

w.

Theorem 3.4. Let X0 and Y0 be two nonempty compact subsets of X and Y ,

respectively. Suppose that F : X0 × Y0 → 2R
n

, F (x, y) = u(x) + v(y) +M and

the following conditions are satisfied:
(i) u and v are two continuous vector-valued mappings on X0 and Y0, respect-

ively.

(ii) M is a nonempty S-bounded closed subset of Rn.

Then, F has a weakly S-loose saddle point and SP ′

w = B′

w ×A′

w.

Proof. Since M is a nonempty S-bounded closed subset of Rn, M is a compact
subset of Rn. Then, by assumptions and Lemma 3.3(i), the condition (i) of
Theorem 3.2 holds. By Remark 3.1, the conditions (ii) and (iii) of Theorem
3.2 also hold. Therefore, by Theorem 3.2, the conclusion follows readily. �

Remark 3.5. When M = {0Rn}, Theorem 3.4 reduces to Proposition 4.2 in
[24].

Similar to the proof of Theorems 3.3 and 3.4, we can get the following
theorem.

Theorem 3.5. Let X0 and Y0 be two nonempty compact subsets of X and Y ,

respectively. Suppose that F : X0 × Y0 → 2R
n

, F (x, y) = u(x) + v(y) +M and

the following conditions are satisfied:
(i) u and v are two continuous vector-valued mappings on X0 and Y0, respect-

ively.

(ii) M is a nonempty S-bounded closed subset of Rn.

Then, there exists (x̄, ȳ) ∈ X0 × Y0 such that

(u(x̄) + v(ȳ) +M)
⋂

((Max
⋃

x∈X0

MinwF (x, Y0)− S)) 6= ∅

and

(u(x̄) + v(ȳ) +M)
⋂

(Min
⋃

y∈Y0

MaxwF (X0, y) + S) 6= ∅.

Remark 3.6. When M = {0Rn}, Theorem 3.5 reduces to the next following
result:

∃ z1 ∈ Min
⋃

y∈Y0

MaxwF (X0, y) and ∃ z2 ∈ Max
⋃

x∈X0

MinwF (x, Y0)

such that

z1 ∈ z2 − S.
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4. Concluding remarks

In this paper, we first introduce a class of set-valued mappings. Then,
for this sort of mappings, we investigate the cone loose saddle point theorem
and minimax theorem without any hypotheses of convexity, which generalize
existing results in the literatures.

Acknowledgement. The authors are grateful to the anonymous referees for
their valuable comments and suggestions, which improved the paper.
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