Bull. Korean Math. Soc. ${\bf 50}$ (2013), No. 5, pp. 1623–1630 http://dx.doi.org/10.4134/BKMS.2013.50.5.1623

ON PERIODIC *P*-CONTINUED FRACTION HAVING PERIOD LENGTH ONE

Amara Chandoul, Hela Ben Amar, and Mohamed Mkaouar

ABSTRACT. The aim of this paper is to prove that every quadratic formal power series ω can be expressed as a periodic non-simple continued fraction having period length one.

1. Introduction

Let p be a prime, q be a power of p and \mathbb{F}_q be a field with q elements. Let $\mathbb{F}_q((X^{-1}))$ denote the field of all formal power series $\omega = \sum_{n \geq v} \omega_n X^{-n}$ in an indeterminate X, with ω_n all lying in the field \mathbb{F}_q . Recall that $\mathbb{F}_q[X]$ denote the ring of polynomials in X with coefficients in \mathbb{F}_q .

For the above formal Laurent series ω , we may assume that $v \neq 0$. Then the integer $v = v(\omega)$ is called the *order* of ω . The *valuation* of ω is defined to be $|\omega| = q^{-v(\omega)}$. It is well known that $|\cdot|$ is a non-archimedean valuation on the field $\mathbb{F}_q((X^{-1}))$ and $\mathbb{F}_q((X^{-1}))$ is a complete metric space under the metric ρ defined by $\rho(\omega - \psi) = |\omega - \psi|$.

defined by $\rho(\omega - \psi) = |\omega - \psi|$. For $\omega = \sum_{n \ge n_0} \omega_n X^{-n} \in \mathbb{F}_q((X^{-1}))$, let $[\omega] = \sum_{v \le n \le 0} \omega_n X^{-n} \in \mathbb{F}_q[X]$. We call $[\omega]$ the polynomial part of ω . It is evident that the integer $-v(\omega) := -v$ is equal to the degree deg $[\omega]$ of the polynomial $[\omega]$ provided $v \le 0$, i.e., $\omega \ne 0$.

Let D(0,1) denote the valuation ideal $X^{-1}\mathbb{F}_q[[X^{-1}]]$ in the ring of formal power series $\mathbb{F}_q[[X^{-1}]]$. It consists of all formal series $\sum_{n\geq 1}\omega_n X^{-n}$.

Let $P \in \mathbb{F}_q[X]$. Consider the following transformation from D(0,1) to D(0,1) defined by

$$T_P(\omega) := \left\{\frac{P}{\omega}\right\}, \ T_P(0) := 0.$$

This map describes the *P*-continued fraction over the field of Laurent series. As in the classical theory, every $\omega \in D(0,1)$ has the following *P*-continued

©2013 The Korean Mathematical Society

1623

Received September 23, 2012.

²⁰¹⁰ Mathematics Subject Classification. 11A55, 11D45, 11D72, 11J61, 11J66.

Key words and phrases. continued fraction, Laurent series, finite.

fraction expansion

(1.1)
$$\omega = C_0 + \frac{P}{C_1 + \frac{P}{C_2 + \frac{P}{C_3 + \cdot \cdot + \frac{P}{C_i + \cdot \cdot \cdot}}}} = [0; C_1(\omega), C_2(\omega), \dots]_P,$$

where the digits $C_i(\omega)$ are polynomials of strictly positive degree and are defined by

$$\forall i \ge 1, \ C_i(\omega) = \left\lfloor \frac{P}{T_P^i\left(\frac{P}{\omega}\right)} \right\rfloor.$$

It is clear that

(1.2)
$$T_P[0, C_1, \dots, C_i, \dots]_P = [0, C_2, \dots, C_i, \dots]_P$$

It is easy to convert a simple continued fraction to a P-continued fraction as follows

(1.3)

$$[D_0, D_1, D_2, D_3, \ldots] = [D_0, D_1, D_2, D_3, \ldots]_1 = [D_0, PD_1, D_2, PD_3, \ldots]_P.$$

In [1] Burger et al. prove that every real quadratic irrational α can be expressed as a periodic non-simple continued fraction having period length one. Moreover, it is proved that the sequence of rational numbers generated by successive truncations of this expansion is a sequence of convergents of α , For further references on the subject, see also [3], [2] and [4].

In this paper, we extend their results over the field of formal power series by proving that every quadratic formal power series ω can be expressed as a non-simple continued fraction having period length one. We establish our result by extending some of the arguments of [1], in this new context and making appropriate adjustments.

2. Results

Each $\omega \in \mathbb{F}_q((X^{-1}))$ has a continued fraction representation given by $\omega = [a_0; a_1, \ldots]$, deg $a_i \ge 1$, $\forall i \ge 1$, we refer to the $(\frac{A_n}{B_n})_{n\ge 0}$ as convergents to ω . A_n and B_n satisfy the recurrence relation:

(2.1)
$$A_{-1} = 1, A_0 = D_0, A_n = D_n A_{n-1} + A_{n-2}$$
 for $n = 1, 2, \dots,$

(2.2)
$$B_{-1} = 0, B_0 = 1, B_n = D_n B_{n-1} + B_{n-2}$$
 for $n = 1, 2, \dots,$

(2.3)
$$A_n B_{n-1} - B_n A_{n-1} = (-1)^n$$
 for $n = 1, 2, \dots$

Now, we give the main result of this section.

Theorem 2.1. Let ω an arbitrary quadratic formal power series written as

$$\omega = [a_0, \dots, a_{s-1}, \overline{D_0, D_1, \dots, D_{t-1}}]$$

Then ω can be expressed as the period one $(-1)^t R^2_{t+1}$ -continued fraction

$$\omega = \left[a_0, (-1)^t R_{t+1}^2 a_1, \dots, (-1)^t R_{t+1}^2 a_{s-1}, \\ D_0, (-1)^{t+1} R_{t+1} B_{t+1}, \overline{(-1)^{t+1} R_{t+1} P}\right]_{(-1)^t R_{t+1}^2}$$

where $P = A_t + B_{t-1}$ and $R_{t+1} = D_0 B_{t+1} - A_{t+1}$.

Remark 2.2. If the preperiod of ω is odd, then

$$\omega = [a_0, \dots, a_{s-1}, \overline{D_0, D_1, \dots, D_{t-1}}] = [a_0, \dots, a_{s-1}, D_0, \overline{D_1, \dots, D_{t-1}, D_0}]$$

Consequently, we can suppose that s is even in Theorem 2.1.

In order to prove this theorem, we need the following lemmas.

Lemma 2.3. Let $R_i = D_0 B_i - A_i$ for all $i \ge 0$. For all t, the following assertions are satisfied:

(i) $R_{t-1}A_t + R_{t-2}B_t = (B_{t-2} + A_{t-1})R_t.$ (ii) $B_{t-1}R_{t-2} - R_{t-1}B_{t-2} = (-1)^t.$ (iii) $A_{t-1}R_{t-2} - R_{t-1}A_{t-2} = D_0(-1)^t.$ (iv) $D_0R_{t-1} + R_{t-2} = R_t.$

Proof. Replacing R_i by $D_0B_i - A_i$ and using (2.3), we get.

(i)
$$R_{t-1}A_t + R_{t-2}B_t - (B_{t-2} + A_{t-1})R_t$$

 $= D_0(A_tB_{t-1} - A_{t-1}B_t) + (A_tB_{t-2} - A_{t-2}B_t)$
 $= D_0(-1)^{t-1} + D_0(-1)^{t-2}$
 $= 0.$
(ii) $B_{t-1}R_{t-2} - R_{t-1}B_{t-2} = -B_{t-1}A_{t-2} + A_{t-1}B_{t-2} = (-1)^t.$
(iii) $A_{t-1}R_{t-2} - R_{t-1}A_{t-2} = D_0(A_{t-1}B_{t-2} - B_{t-1}A_{t-2}) = D_0(-1)^t.$
(iv) $D_0R_{t-1} + R_{t-2} = D_0(D_0B_{t-1} + B_{t-2}) - (D_0A_{t-1} + A_{t-2}),$
 $= D_0B_t - A_t$
 $= R_t.$

Lemma 2.4. Let $\omega = [\overline{D_0, D_1, \dots, D_{t-1}}]$ be a quadratic formal power series having a purely simple continued fraction of period of length t. Let $(\frac{A_n}{B_n})_n$ be the sequence of the convergents of ω , $P = A_t + B_{t-1}$ and

(2.4)
$$R_i = D_0 B_i - A_i \text{ for all } i \ge 0.$$

Then

$$\omega = \frac{D_0 \varphi_P - R_{t-1}}{\varphi_P + R_t},$$

where $\varphi_P = \varphi(P,t)$ is the root of $Y^2 - PY + (-1)^{t+1} = 0$, with $[\varphi_P] = P$.

Proof. Let $\omega = [\overline{D_0, D_1, \dots, D_{t-1}}]$. Then ω is the unique root of the equation $\Lambda(Y) = B_t Y^2 + (B_{t-1} - A_t)Y - A_{t-1}$

such that $|\omega| > 1$. Let $\gamma = \frac{D_0 \varphi_P - R_{t-1}}{\varphi_P + R_t}$, since $|\gamma| > 1$, then it is sufficient to show that $\Lambda(\gamma) = 0$ in order to prove that $\gamma = \omega$. We have

$$\begin{split} \Lambda(\gamma) &= B_t \Big(\frac{D_0 \varphi_P - R_{t-1}}{\varphi_P + R_t} \Big)^2 + (B_{t-1} - A_t) \Big(\frac{D_0 \varphi_P - R_{t-1}}{\varphi_P + R_t} \Big) - A_{t-1} \\ &= \frac{\alpha \varphi_P^2 + \beta \varphi_P + \lambda}{(\varphi_P + R_t)^2}, \end{split}$$

where, according to (2.2),

$$\begin{split} &\alpha = B_t D_0^2 + D_0 (B_{t-1} - A_t) - A_{t-1} \\ &= D_0 (D_0 B_t + B_{t-1}) - (D_0 A_t + A_{t-1}) \\ &= D_0 B_{t+1} - A_{t+1} \\ &= R_{t+1}, \\ &\beta = -2 D_0 R_{t-1} B_t + (B_{t-1} - A_t) (D_0 R_t - R_{t-1}) - 2 A_{t-1} R_t \\ &= R_{t-1} (-2 D_0 B_t - B_{t-1} + A_t) + R_t (D_0 (B_{t-1} - A_t) - 2 A_{t-1}) \\ &= R_{t-1} (-B_{t+1} - R_t) + R_t (R_{t-1} - A_{t+1}) \\ &= -R_{t-1} B_{t+1} - R_t A_{t+1}. \end{split}$$

Using Lemma 2.3(i), we obtain

$$\beta = -(B_{t-1} + A_t)R_{t+1} = -PR_{t+1},$$

and

$$\lambda = B_t R_{t-1}^2 - (B_{t-1} - A_t) R_t R_{t-1} - A_{t-1} R_t^2,$$

= $R_{t-1} (B_t R_{t-1} - R_t B_{t-1}) + R_t (A_t R_{t-1} - A_{t-1} R_t).$

Lemma 2.3(ii), (iii) and (iv) implies that

$$\lambda = R_{t-1}(-1)^{t+1} + R_t(-1)^{t+1}D_0,$$

= $(-1)^{t+1}(D_0R_t + R_{t-1}),$
= $(-1)^{t+1}R_{t+1}.$

Finally,

$$\Lambda(\gamma) = \frac{R_{t+1}(\varphi_P^2 - P\varphi_P + (-1)^{t+1})}{(\varphi_P + R_t)^2} = 0.$$

Lemma 2.5. Let $\omega \in \mathbb{F}_q((X^{-1}))$ such that $\omega = [\overline{D_0, D_1, \ldots, D_{t-1}}]$ and $(\frac{A_n}{B_n})_n$ be the sequence of the convergents of ω . Then

(2.5)
$$\omega = [D_0, B_{t+1}, \overline{(-1)^{t+1}R_{t+1}P, P}]_{-R_{t+1}}$$

and

(2.6)
$$\omega = \left[D_0, (-1)^{t+1} R_{t+1} B_{t+1}, \overline{(-1)^{t+1} R_{t+1} P} \right]_{(-1)^t R_{t+1}^2},$$

where $P = A_t + B_{t-1}$.

Proof. Let $\omega = [\overline{D_0, D_1, \dots, D_{t-1}}]$. Then it is clear, by Lemma 2.4 that

$$\omega = \frac{D_0 \varphi_P - R_{t-1}}{\varphi_P + R_t},$$

where φ_P is the root of $Y^2 - PY + (-1)^{t+1} = 0$, with $P = A_t + B_{t-1}$ and $[\varphi_P] = P$. Then, we have

$$\omega = D_0 + \frac{-R_{t+1}}{B_{t+1} + \frac{(-1)^t}{\varphi_P}}.$$

As $\varphi_P = P + \frac{(-1)^t}{\varphi_P}$, we get

$$\begin{split} \omega &= D_0 + \frac{-R_{t+1}}{B_{t+1} + \frac{(-1)^t}{\varphi_P}} \\ &= D_0 + \frac{-R_{t+1}}{B_{t+1} + \frac{-R_{t+1}}{(-1)^{t+1}R_{t+1}P + \frac{-R_{t+1}}{P + \frac{(-1)^t}{\varphi_P}}} \\ &= D_0 + \frac{-R_{t+1}}{B_{t+1} + \frac{-R_{t+1}}{(-1)^{t+1}R_{t+1}P + \frac{-R_{t+1}}{P + \frac{(-1)^t}{\varphi_P}}} \\ &= D_0 + \frac{-R_{t+1}}{B_{t+1} + \frac{-R_{t+1}}{(-1)^{t+1}R_{t+1}P + \frac{-R_{t+1}}{P + \frac{-R_{t+1}}{(-1)^{t+1}R_{t+1}P + \frac{-R_{t+1}}{\varphi_P}}} \\ &= \left[D_0, B_{t+1}, \overline{(-1)^{t+1}R_{t+1}P, P} \right]_{-R_{t+1}}. \end{split}$$

In addition, we have

$$\omega = D_0 + \frac{-R_{t+1}}{B_{t+1} + \frac{-R_{t+1}}{(-1)^{t+1}R_{t+1}P + \frac{-R_{t+1}}{P + \frac{-R_{t+1}}{(-1)^{t+1}R_{t+1}P + \frac{-R_{t+1}}{\varphi_P}}}$$

$$= D_0 + \frac{(-1)^t R_{t+1}^2}{(-1)^{t+1} R_{t+1} B_{t+1} + \frac{(-1)^t R_{t+1}^2}{(-1)^{t+1} R_{t+1} P + \frac{(-1)^t R_{t+1}^2}{(-1)^{t+1} R_{t+1} P + \frac{(-1)^t R_{t+1}^2}{\varphi_P}}}$$
$$= \left[D_0, (-1)^{t+1} R_{t+1} B_{t+1}, \overline{(-1)^{t+1} R_{t+1} P} \right]_{(-1)^t R_{t+1}^2}.$$

Proof of Theorem 2.1. Let

$$\omega = [a_0, \dots, a_{s-1}, \overline{D_0, D_1, \dots, D_{t-1}}] \text{ and } \omega^* = [\overline{D_0, D_1, \dots, D_{t-1}}].$$

By Lemma 2.5 and (2.6), we conclude that

(2.7)
$$\omega^* = \left[D_0, (-1)^{t+1} R_{t+1} B_{t+1}, \overline{(-1)^{t+1} R_{t+1} P} \right]_{(-1)^t R_{t+1}^2}.$$

Applying (1.3) to ω , we obtain

(2.8)
$$\omega = \left[a_0, (-1)^t R_{t+1}^2 a_1, \dots, (-1)^t R_{t+1}^2 a_{s-1}, \omega^*\right].$$

We have immediately from (2.7) and (2.8),

$$\omega = \left[a_0, (-1)^t R_{t+1}^2 a_1, \dots, (-1)^t R_{t+1}^2 a_{s-1}, \\ D_0, (-1)^{t+1} R_{t+1} B_{t+1}, \overline{(-1)^{t+1} R_{t+1} P}\right]_{(-1)^t R_{t+1}^2}.$$

3. Examples

Example 3.1. Let $\omega \in \mathbb{F}_2((X^{-1}))$ be a quadratic formal power series solution of the equation

$$(X2 + X + 1)Y2 + (X3 + X2 + X + 1)Y + X2 + X + 1 = 0.$$

We can prove that the continued fraction expansion of ω is defined as follows

$$\omega = [\overline{X,X+1,X}].$$

Applying Lemma 2.5, we obtain

$$\omega = \left[X, R_4 B_4, \overline{R_4 P} \right]_{-R_4^2},$$

where $P = A_3 + B_2$.

Using the induction formulas (2.1) and (2.2), we obtain

$$A_{1} = X^{2} + X + 1$$

$$A_{2} = X^{2}(X + 1)$$

$$A_{3} = X^{3}(X + 1) + X(X + 1) + 1$$

$$A_{4} = (X^{3} + 1)(X^{2} + 1)$$

and

$$B_1 = X + 1 B_2 = X^2 + X + 1 B_3 = X^3 + X^2 + 1 B_4 = X^4.$$

Then

$$R_4 = D_0 B_4 - A_4 = X^3 + X^2 + 1$$

and

$$P = X^3(X+1).$$

Finally

$$\omega = \left[X, X^7 + X^6 + X^4, \overline{X^7 + X^6 + X^3 + X} \right]_{X^6 + X^4 + 1}.$$

Example 3.2. Let $\psi \in \mathbb{F}_2((X^{-1}))$ be a quadratic formal power series solution of the equation

$$(X2 + X + 1)Y2 + X3Y + X3 + X2 + 1 = 0.$$

We can prove that the continued fraction expansion of ψ is defined as follows

 $\psi = [X, X^2 + 1, X^2, \overline{X + 1, X, X + 1}].$

The preperiod of ψ is odd, so by Remark 2.2

$$\psi = [X, X^2 + 1, X^2, X + 1, \overline{X, X + 1, X}].$$

Let $\psi^* = [\overline{X, X + 1, X}]$. Then $\psi = [X, X^2 + 1, X^2, X + 1, \psi^*]$, and by Example 3.1

$$\psi^* = \left[X, X^7 + X^6 + X^4, \overline{X^7 + X^6 + X^3 + X}\right]_{X^6 + X^4 + 1}$$

Applying Theorem 2.1, we obtain

$$\begin{split} \psi &= \left[X, (X^2+1)L, X^2L, (X+1)L, X, X^7+X^6+X^4, \overline{X^7+X^6+X^3+X}\right]_L, \end{split}$$
 where $L = X^6+X^4+1.$

References

- E. B. Burger, J. Gell-Redman, R. Kravitz, D. Walton, and N. Yates, Shrinking the period lengths of continued fractions while still capturing convergents, J. Number Theory 128 (2008), no. 1, 144–153.
- [2] E. B. Van Vleck, On the convergence of the continued fraction of Gauss and other continued fractions, Ann. of Math. (2) 3 (1901/02), no. 1-4, 1–18.
- [3] _____, On the convergence of algebraic continued fractions whose coefficients have limiting values, Trans. Amer. Math. Soc. 5 (1904), no. 3, 253–262.
- [4] H. Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984), no. 1, 57–64.

1630 AMARA CHANDOUL, HELA BEN AMAR, AND MOHAMED MKAOUAR

Amara Chandoul Faculté des Sciences de Sfax BP 1171, Sfax 3000, Tunisia *E-mail address*: amarachandoul@yahoo.fr

HELA BEN AMAR FACULTÉ DES SCIENCES DE SFAX BP 1171, SFAX 3000, TUNISIA *E-mail address*: Hela.BenAmar@issatgb.rnu.tn

MOHAMED MKAOUAR FACULTÉ DES SCIENCES DE SFAX BP 1171, SFAX 3000, TUNISIA *E-mail address*: mohamed.mkaouar@fss.rnu.tn