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ON PERIODIC P -CONTINUED FRACTION HAVING

PERIOD LENGTH ONE

Amara Chandoul, Hela Ben Amar, and Mohamed Mkaouar

Abstract. The aim of this paper is to prove that every quadratic for-
mal power series ω can be expressed as a periodic non-simple continued
fraction having period length one.

1. Introduction

Let p be a prime, q be a power of p and Fq be a field with q elements. Let
Fq((X

−1)) denote the field of all formal power series ω =
∑

n≥v ωnX
−n in an

indeterminate X , with ωn all lying in the field Fq. Recall that Fq[X ] denote
the ring of polynomials in X with coefficients in Fq.

For the above formal Laurent series ω, we may assume that v 6= 0. Then the
integer v = v(ω) is called the order of ω. The valuation of ω is defined to be
| ω |= q−v(ω). It is well known that | · | is a non-archimedean valuation on the
field Fq((X

−1)) and Fq((X
−1)) is a complete metric space under the metric ρ

defined by ρ(ω − ψ) =| ω − ψ | .
For ω =

∑

n≥n0
ωnX

−n ∈ Fq((X
−1)), let [ω] =

∑

v≤n≤0 ωnX
−n ∈ Fq[X ].

We call [ω] the polynomial part of ω. It is evident that the integer −v(ω) := −v
is equal to the degree deg [ω] of the polynomial [ω] provided v ≤ 0, i.e., ω 6= 0.

Let D(0, 1) denote the valuation ideal X−1
Fq[[X

−1]] in the ring of formal
power series Fq[[X

−1]]. It consists of all formal series
∑

n≥1 ωnX
−n.

Let P ∈ Fq[X ]. Consider the following transformation from D(0, 1) to
D(0, 1) defined by

TP (ω) :=

{

P

ω

}

, TP (0) := 0.

This map describes the P -continued fraction over the field of Laurent series.
As in the classical theory, every ω ∈ D(0, 1) has the following P -continued
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fraction expansion

(1.1) ω = C0 +
P

C1 +
P

C2 +
P

C3 +
.. . +

P

Ci +
.. .

= [0;C1(ω), C2(ω), . . .]P ,

where the digits Ci(ω) are polynomials of strictly positive degree and are de-
fined by

∀i ≥ 1, Ci(ω) =









P

T i
P

(

P

ω

)









.

It is clear that

(1.2) TP [0, C1, . . . , Ci, . . .]P = [0, C2, . . . , Ci, . . .]P .

It is easy to convert a simple continued fraction to a P -continued fraction
as follows
(1.3)

[D0, D1, D2, D3, . . .] = [D0, D1, D2, D3, . . .]1 = [D0, PD1, D2, PD3, . . .]P .

In [1] Burger et al. prove that every real quadratic irrational α can be ex-
pressed as a periodic non-simple continued fraction having period length one.
Moreover, it is proved that the sequence of rational numbers generated by suc-
cessive truncations of this expansion is a sequence of convergents of α, For
further references on the subject, see also [3], [2] and [4].

In this paper, we extend their results over the field of formal power series by
proving that every quadratic formal power series ω can be expressed as a non-
simple continued fraction having period length one. We establish our result
by extending some of the arguments of [1], in this new context and making
appropriate adjustments.

2. Results

Each ω ∈ Fq((X
−1)) has a continued fraction representation given by ω =

[a0; a1, . . .], deg ai ≥ 1, ∀i ≥ 1, we refer to the (An

Bn

)n≥0 as convergents to ω.
An and Bn satisfy the recurrence relation:

(2.1) A−1 = 1, A0 = D0, An = DnAn−1 +An−2 for n = 1, 2, . . . ,

(2.2) B−1 = 0, B0 = 1, Bn = DnBn−1 +Bn−2 for n = 1, 2, . . . ,

(2.3) AnBn−1 −BnAn−1 = (−1)n for n = 1, 2, . . . .

Now, we give the main result of this section.
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Theorem 2.1. Let ω an arbitrary quadratic formal power series written as

ω = [a0, . . . , as−1, D0, D1, . . . , Dt−1].

Then ω can be expressed as the period one (−1)tR2
t+1-continued fraction

ω =
[

a0, (−1)tR2
t+1a1, . . . , (−1)tR2

t+1as−1,

D0, (−1)t+1Rt+1Bt+1, (−1)t+1Rt+1P
]

(−1)tR2
t+1

,

where P = At +Bt−1 and Rt+1 = D0Bt+1 −At+1.

Remark 2.2. If the preperiod of ω is odd, then

ω = [a0, . . . , as−1, D0, D1, . . . , Dt−1] = [a0, . . . , as−1, D0, D1, . . . , Dt−1, D0].

Consequently, we can suppose that s is even in Theorem 2.1.

In order to prove this theorem, we need the following lemmas.

Lemma 2.3. Let Ri = D0Bi − Ai for all i ≥ 0. For all t, the following

assertions are satisfied:
(i) Rt−1At +Rt−2Bt = (Bt−2 +At−1)Rt.

(ii) Bt−1Rt−2 −Rt−1Bt−2 = (−1)t.
(iii) At−1Rt−2 −Rt−1At−2 = D0(−1)t.
(iv) D0Rt−1 +Rt−2 = Rt.

Proof. Replacing Ri by D0Bi −Ai and using (2.3), we get.

(i) Rt−1At +Rt−2Bt − (Bt−2 +At−1)Rt

= D0(AtBt−1 −At−1Bt) + (AtBt−2 −At−2Bt)

= D0(−1)t−1 +D0(−1)t−2

= 0.

(ii) Bt−1Rt−2 −Rt−1Bt−2 = −Bt−1At−2 +At−1Bt−2 = (−1)t.
(iii) At−1Rt−2 −Rt−1At−2 = D0(At−1Bt−2 −Bt−1At−2) = D0(−1)t.
(iv) D0Rt−1 +Rt−2 = D0(D0Bt−1 +Bt−2)− (D0At−1 +At−2),

= D0Bt −At

= Rt. �

Lemma 2.4. Let ω = [D0, D1, . . . , Dt−1] be a quadratic formal power series

having a purely simple continued fraction of period of length t. Let (An

Bn
)n be

the sequence of the convergents of ω, P = At +Bt−1 and

(2.4) Ri = D0Bi −Ai for all i ≥ 0.

Then

ω =
D0ϕP −Rt−1

ϕP +Rt

,

where ϕP = ϕ(P, t) is the root of Y 2 − PY + (−1)t+1 = 0, with [ϕP ] = P.
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Proof. Let ω = [D0, D1, . . . , Dt−1]. Then ω is the unique root of the equation

Λ(Y ) = BtY
2 + (Bt−1 −At)Y −At−1

such that | ω |> 1. Let γ = D0ϕP−Rt−1

ϕP+Rt

, since | γ |> 1, then it is sufficient to

show that Λ(γ) = 0 in order to prove that γ = ω. We have

Λ(γ) = Bt

(D0ϕP −Rt−1

ϕP +Rt

)2

+ (Bt−1 −At)
(D0ϕP −Rt−1

ϕP + Rt

)

−At−1

=
αϕ2

P + βϕP + λ

(ϕP +Rt)2
,

where, according to (2.2),

α = BtD
2
0 +D0(Bt−1 −At)−At−1

= D0(D0Bt +Bt−1)− (D0At +At−1)

= D0Bt+1 −At+1

= Rt+1,

β = −2D0Rt−1Bt + (Bt−1 −At)(D0Rt −Rt−1)− 2At−1Rt

= Rt−1(−2D0Bt −Bt−1 +At) +Rt(D0(Bt−1 −At)− 2At−1)

= Rt−1(−Bt+1 −Rt) +Rt(Rt−1 −At+1)

= −Rt−1Bt+1 −RtAt+1.

Using Lemma 2.3(i), we obtain

β = −(Bt−1 +At)Rt+1 = −PRt+1,

and

λ = BtR
2
t−1 − (Bt−1 −At)RtRt−1 −At−1R

2
t ,

= Rt−1(BtRt−1 −RtBt−1) +Rt(AtRt−1 −At−1Rt).

Lemma 2.3(ii), (iii) and (iv) implies that

λ = Rt−1(−1)t+1 + Rt(−1)t+1D0,

= (−1)t+1(D0Rt +Rt−1),

= (−1)t+1Rt+1.

Finally,

Λ(γ) =
Rt+1(ϕ

2
P − PϕP + (−1)t+1)

(ϕP +Rt)2
= 0.

�

Lemma 2.5. Let ω ∈ Fq((X
−1)) such that ω = [D0, D1, . . . , Dt−1] and (An

Bn

)n
be the sequence of the convergents of ω. Then

(2.5) ω = [D0, Bt+1, (−1)t+1Rt+1P, P ]−Rt+1

and

(2.6) ω =
[

D0, (−1)t+1Rt+1Bt+1, (−1)t+1Rt+1P
]

(−1)tR2
t+1

,
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where P = At +Bt−1.

Proof. Let ω = [D0, D1, . . . , Dt−1]. Then it is clear, by Lemma 2.4 that

ω =
D0ϕP −Rt−1

ϕP +Rt

,

where ϕP is the root of Y 2 − PY + (−1)t+1 = 0, with P = At + Bt−1 and
[ϕP ] = P. Then, we have

ω = D0 +
−Rt+1

Bt+1 +
(−1)t

ϕP

.

As ϕP = P + (−1)t

ϕP

, we get

ω = D0 +
−Rt+1

Bt+1 +
(−1)t

ϕP

= D0 +
−Rt+1

Bt+1 +
−Rt+1

(−1)t+1Rt+1P +
−Rt+1

P +
(−1)t

ϕP

= D0 +
−Rt+1

Bt+1 +
−Rt+1

(−1)t+1Rt+1P +
−Rt+1

P +
(−1)t

ϕP

= D0 +
−Rt+1

Bt+1 +
−Rt+1

(−1)t+1Rt+1P +
−Rt+1

P +
−Rt+1

(−1)t+1Rt+1P +
−Rt+1

ϕP

=
[

D0, Bt+1, (−1)t+1Rt+1P, P
]

−Rt+1

.

In addition, we have

ω = D0 +
−Rt+1

Bt+1 +
−Rt+1

(−1)t+1Rt+1P +
−Rt+1

P +
−Rt+1

(−1)t+1Rt+1P +
−Rt+1

ϕP
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= D0 +
(−1)tR2

t+1

(−1)t+1Rt+1Bt+1 +
(−1)tR2

t+1

(−1)t+1Rt+1P +
(−1)tR2

t+1

(−1)t+1Rt+1P +
(−1)tR2

t+1

ϕP

=
[

D0, (−1)t+1Rt+1Bt+1, (−1)t+1Rt+1P
]

(−1)tR2
t+1

.
�

Proof of Theorem 2.1. Let

ω = [a0, . . . , as−1, D0, D1, . . . , Dt−1] and ω
∗ = [D0, D1, . . . , Dt−1].

By Lemma 2.5 and (2.6), we conclude that

(2.7) ω∗ =
[

D0, (−1)t+1Rt+1Bt+1, (−1)t+1Rt+1P
]

(−1)tR2
t+1

.

Applying (1.3) to ω, we obtain

(2.8) ω =
[

a0, (−1)tR2
t+1a1, . . . , (−1)tR2

t+1as−1, ω
∗
]

.

We have immediately from (2.7) and (2.8),

ω =
[

a0, (−1)tR2
t+1a1, . . . , (−1)tR2

t+1as−1,

D0, (−1)t+1Rt+1Bt+1, (−1)t+1Rt+1P
]

(−1)tR2
t+1

.
�

3. Examples

Example 3.1. Let ω ∈ F2((X
−1)) be a quadratic formal power series solution

of the equation

(X2 +X + 1)Y 2 + (X3 +X2 +X + 1)Y +X2 +X + 1 = 0.

We can prove that the continued fraction expansion of ω is defined as follows

ω = [X,X + 1, X].

Applying Lemma 2.5, we obtain

ω =
[

X,R4B4, R4P
]

−R2
4

,

where P = A3 + B2.
Using the induction formulas (2.1) and (2.2), we obtain

A1 = X2 +X + 1
A2 = X2(X + 1)
A3 = X3(X + 1) +X(X + 1) + 1
A4 = (X3 + 1)(X2 + 1)
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and
B1 = X + 1
B2 = X2 +X + 1
B3 = X3 +X2 + 1
B4 = X4.

Then
R4 = D0B4 −A4

= X3 +X2 + 1

and

P = X3(X + 1).

Finally

ω =
[

X,X7 +X6 +X4, X7 +X6 +X3 +X
]

X6+X4+1
.

Example 3.2. Let ψ ∈ F2((X
−1)) be a quadratic formal power series solution

of the equation

(X2 +X + 1)Y 2 +X3Y +X3 +X2 + 1 = 0.

We can prove that the continued fraction expansion of ψ is defined as follows

ψ = [X,X2 + 1, X2, X + 1, X,X + 1].

The preperiod of ψ is odd, so by Remark 2.2

ψ = [X,X2 + 1, X2, X + 1, X,X + 1, X].

Let ψ∗ = [X,X + 1, X]. Then ψ = [X,X2+1, X2, X+1, ψ∗], and by Example
3.1

ψ∗ =
[

X,X7 +X6 +X4, X7 +X6 +X3 +X
]

X6+X4+1
.

Applying Theorem 2.1, we obtain

ψ =
[

X, (X2 + 1)L,X2L, (X + 1)L,X,X7 +X6 +X4, X7 +X6 +X3 +X
]

L
,

where L = X6 +X4 + 1.
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