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ON PERIODIC P-CONTINUED FRACTION HAVING
PERIOD LENGTH ONE

AMARA CHANDOUL, HELA BEN AMAR, AND MOHAMED MKAOUAR

ABSTRACT. The aim of this paper is to prove that every quadratic for-
mal power series w can be expressed as a periodic non-simple continued
fraction having period length one.

1. Introduction

Let p be a prime, ¢ be a power of p and IF, be a field with ¢ elements. Let
Fq((X 1)) denote the field of all formal power series w = > o w, X" in an
indeterminate X, with w,, all lying in the field F,. Recall that F,[X] denote
the ring of polynomials in X with coefficients in F,,.

For the above formal Laurent series w, we may assume that v # 0. Then the
integer v = v(w) is called the order of w. The valuation of w is defined to be
| w|= ¢ ¥, It is well known that | - | is a non-archimedean valuation on the
field Fy((X 1)) and F,((X~!)) is a complete metric space under the metric p
defined by p(w —¢) =|w -1 |.

For w = 3,0, aX " € F(X71), lot [w] = 3, counX ™ € F,[X],
We call [w] the polynomial part of w. Tt is evident that the integer —v(w) := —v
is equal to the degree deg [w] of the polynomial [w] provided v < 0, i.e., w # 0.

Let D(0,1) denote the valuation ideal X ~'F,[[X ~!]] in the ring of formal
power series Fo[[X 1]]. It consists of all formal series Y, ; w, X ™.

Let P € F,[X]. Consider the following transformation from D(0,1) to
D(0,1) defined by

P
Tp(w) = {—} , TP(O) = 0.
w
This map describes the P-continued fraction over the field of Laurent series.
As in the classical theory, every w € D(0,1) has the following P-continued
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fraction expansion

(1.1) w=Cy+ = [O;Cl(w)ac2(w)a"']Pa

Ci+

C
2 . P
Cs3+ 4 —
Ci+ .
where the digits C;(w) are polynomials of strictly positive degree and are de-
fined by

It is clear that
(1.2) Tpl0,C1,...,Ciy .. .]lp =10,Co,...,C4, .. ]p.

It is easy to convert a simple continued fraction to a P-continued fraction
as follows
(1.3)

[Do, D1, Do, D3, ...] = [Dg, D1, D2, Ds,...]1 = [Do, PD1, D2, PDs,...]p.

In [1] Burger et al. prove that every real quadratic irrational a can be ex-
pressed as a periodic non-simple continued fraction having period length one.
Moreover, it is proved that the sequence of rational numbers generated by suc-
cessive truncations of this expansion is a sequence of convergents of «, For
further references on the subject, see also [3], [2] and [4].

In this paper, we extend their results over the field of formal power series by
proving that every quadratic formal power series w can be expressed as a non-
simple continued fraction having period length one. We establish our result
by extending some of the arguments of [1], in this new context and making
appropriate adjustments.

2. Results
Each w € Fy((X 1)) has a continued fraction representation given by w =
[ap; ai,...], dega; > 1, Vi > 1, we refer to the (%)nzo as convergents to w.
A, and B, satisfy the recurrence relation:
(21) A_1 = 1, AO = Do, An = DnAn—l + An_g forn = 1, 2, ey
(2.2) B_1=0, Bo=1, Bn=DnBu_i+Bno forn=12,...,
(2.3) ApBp_1— BhAp—1=(-1)" forn=1,2,....

Now, we give the main result of this section.



ON PERIODIC P-CONTINUED FRACTION HAVING PERIOD LENGTH ONE 1625

Theorem 2.1. Let w an arbitrary quadratic formal power series written as

W = [a()a' . aasflvDO;Dlv" 'athl]-

Then w can be expressed as the period one (—1)' R}, -continued fraction
w = [ao, (,1)th2+1a1, e (fl)thQ_i_las,l,

Do. (=) 'Ry 1 Byay. (1) TIR P}
Oa( ) t+1 t-‘rla( ) t+1 (—1)"R2 )

t+1
where P = At + Bt,1 and RtJrl = DOBtJrl - At+1.
Remark 2.2. If the preperiod of w is odd, then

w = [ao,. .. ,as_l,Do,Dl,.. -7Dt—1] = [ao,. .. ,as_l,Do,Dl,.. -7Dt—1aDO]-

Consequently, we can suppose that s is even in Theorem 2.1.
In order to prove this theorem, we need the following lemmas.

Lemma 2.3. Let R; = DogB; — A; for alli > 0. For all t, the following
assertions are satisfied:
(i) Ri—1As + Ri—oB; = (By—2 + A1) Ry.
(ii) Bi—1Rt—2 — Ry—1Bi—9 = (—1)".
(111) A 1Ry o — Ry 1A o = Do(—l)t.
(IV) DoRt,1 + Rtfz = Rt.
Proof. Replacing R; by DoB; — A; and using (2.3), we get.
(i)  Ri1Ai+ Ry 9By — (Bi—o + As—1) Ry
= Do(AyBi—1 — Ar—1B;) + (AyBi—o — Ay_2By)
— Do(il)tfl +DO(71)t72
= 0.
(ii) Bi—1Ri—o — Ri—1Bi—o = —By_1 419 + Ay_1 B2 = (—1)".
(iil) A¢—1Ri—2 — Re—1Ai—2 = Do(As—1Bs—2 — Bi_14;_9) = Do(—1)".
(iv) DoRi—1 + Ri—2 = Do(DoBy—1 + Bi—2) — (DoAi—1 + Ai—2),

= DygB; — A,
= R;. O
Lemma 2.4. Let w = [Dy, D1,...,Di_1] be a quadratic formal power series

having a purely simple continued fraction of period of length t. Let (%)n be
the sequence of the convergents of w, P = Ay + By_1 and

(2.4) R; = DoB; — A; for alli > 0.
Then
_ Dopp — Rty
wp+ Rt

where pp = p(P,t) is the root of Y2 — PY + (=1)!"1 =0, with [pp] = P.
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Proof. Let w = [Dy, D1,...,D;_1]. Then w is the unique root of the equation
AY)=BY?+ (Bi_1 — A)Y — A4

such that | w [> 1. Let v = %, since | v |> 1, then it is sufficient to

show that A(vy) = 0 in order to prove that v = w. We have
Dopp — Ry 1\2 Dopp — Ry 1
A(y) = Bt(h) + (Bi-1 — At)(h) — Ay
aep + Bp + A
(op + Ry)?
where, according to (2.2),
o= ByD§ + Do(Bi—1 — As) — A1
= Do(DoBi + Bi—1) — (DoAs + A¢—1)
= DoBiy1 — At
= Ryy1,
B =—2DgRi_ 1B + (Bi—1 — At)(DoRy — Ry—1) — 2A; 1 Ry
= Ry_1(—2DoB; — Bi—1 + A¢) + Ri(Do(Bi—1 — At) — 2A:-1)
=Ry 1(—=Biy1 — Re) + Re(Re—1 — Agq1)
=—Ri_1Biy1 — RiAyiq.
Using Lemma 2.3(i), we obtain

B=—(Bi—1+ At)Ri11 = —PRiyq,

)

and
A=BiR; | — (Bi—1 — Ay)ReRy_1 — A1 R},
=Ry 1(BtRy—1 — R¢By 1) + Re (At Re—1 — As—1 Ry).
Lemma 2.3(ii), (iii) and (iv) implies that
A=Ri_1(=1)""" 4+ Ry(—1)""' Dy,

= (=)' (DoR; + Ri-1),

= (1" Ryy1.
Finally,

Ay) = Ripi(ep — Por+ (=D)"™) _
(op + Ry)? . O

Lemma 2.5. Let w € Fy (X)) such that w = [Dy, Dy, ..., Dy_1] and (%)n
be the sequence of the convergents of w. Then

(25) w = [DQ, Bt+1, (—1)t+1Rt+1P, P]
and

(2.6) w= |Do,(=1)"" Ry y1Biy1, (1) 1R, P

—Rit1

3
(71)tR%+1
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where P = Ay + Bi_1.

Proof. Let w = [Dy, D1,...,D;_1]. Then it is clear, by Lemma 2.4 that
_ Dopp — Ris
op + Ry

where pp is the root of Y2 — PY + (—1)!*! = 0, with P = A, + B;_; and
[¢p] = P. Then, we have

. —Rip1
= Dy + R

By +

—Ri

=
¥Ypr

(=)' Ry P+
P+

—R
= Do + s
B —Ry1
t+1 T “Roa
(D" R P+ Ty
Py
PP
- —Rit1
=Dy + R
By +

_Rt-l—l
—1)t1R, P
(-1) t+14 + "Rt

P+

—Rita

(1) Ry P+
Yr

== DQ7 Bt+1, (—1)t+1Rt+1P, P
—Rit1

In addition, we have

—Riq
—Riq

w:D0+

Biy1 + R
—1)t+HIR, P
(-1) 14+ “Rin

P+

—R
(~1) ! Resr P+ —2
PP
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(—1)'R?,
(_1)tR%+1
(—1)'R¥,
(=D'RZ.
Yr

= Dy +

(=1)*'Ri41Bit1 +

(=) R P+
(1) Ry P+

Do, (~1)"*' Re1Brs, (1) Rey1 P| .
(- 1)1Rt+1 (I

Proof of Theorem 2.1. Let

w = [ao, ey Qg—1, Do, Dl, ceay Dt—l] and w* = [DQ, Dl, e ;Dt—l]-
By Lemma 2.5 and (2.6), we conclude that

2.7 *= Dy, (-1)""' R, B —1)tHR, P
(2.7) w [ 0, (—1) 1+1Bi41, (1) tr1 L beR?

1
Applying (1.3) to w, we obtain
(2.8) w = [ao, (—1)th2+1a1, A (—1)th2+1as_1,w*} .
We have immediately from (2.7) and (2.8),

w= [ao, (-1)'R{ ja1,...,(=1)" R} a1,

Do, (—1)""' Ry 1By, (*1)t+1Rt+1PL 1y R? .
t+1

3. Examples

Example 3.1. Let w € Fo((X 1)) be a quadratic formal power series solution
of the equation

X+ X+ )Y+ (XP+ X2+ X+ )Y + X2+ X +1=0.
We can prove that the continued fraction expansion of w is defined as follows
w=[X,X +1,X]

Applying Lemma 2.5, we obtain

W= [Xa R4B47R4P —R2>

where P = Ag + BQ.
Using the induction formulas (2.1) and (2.2), we obtain

A =X24+X+1

Ay =X?*(X +1)

A3 =X3(X+ 1)+ X(X +1)+
A= (X3+1)(X2+1)
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and
Bi=X+1
By=X?2+X+1
By =X34+X%2+1
B, = X
Then
Ry = DyBy— Ay
=X3+X%2+1
and
P=X3X+1).
Finally

w:[X,X7+X6+X4,X7+X6+X3+X .
X64+X441

Example 3.2. Let 1) € Fo((X 1)) be a quadratic formal power series solution
of the equation
(X24+ X+ 1)Y2 4+ X3y + X2+ X2+ 1=0.
We can prove that the continued fraction expansion of ¥ is defined as follows
Yv=[X, X +1,X X +1,X,X +1].
The preperiod of ¥ is odd, so by Remark 2.2
Yv=[X,X*+1, X, X+1,X,X +1,X].

Let ¢* = [X, X + 1, X]. Then ¢ = [X, X2+ 1, X2 X +1,9*], and by Example
3.1

w*:[X,X7+X6+X4,X7+X6+X3+X .
X604+ X441

Applying Theorem 2.1, we obtain

= [X, (X2 + 1)L, X?L, (X + 1)L, X, X"+ X6+ X4 X7+ X6 1 X3 +X} ,
L

where L = X6+ X4+ 1.
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