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THE INVARIANCE PRINCIPLE FOR RANDOM SUMS OF A

DOUBLE RANDOM SEQUENCE

Zhenlong Gao and Liang Fang

Abstract. In this paper, we extend Donsker’s invariance principle to
the case of random partial sums processes based on a double sequence of
row-wise i.i.d. random variables.

1. Introduction

The early studies of the invariance principle for partial sums of an i.i.d.
random sequence are dated back to P. Erdös and M. Kac ([5, 6]). Various
particular cases of the invariance principle are derived in their articles. The
present paper deals with the general form of the invariance principle defined as
following:

Definition 1.1. (Let {Yn, n ≥ 1} be a sequence of random variables and

{gn(a1, . . . , an), n ≥ 1}
be a sequence of Borel measurable functions. If the limit distribution

lim
n→∞

P (gn(Y1, . . . , Yn) < λ), −∞ < λ <∞

does not depend on the distributions of {Yn}, then it is said that {Yn} satisfies
the invariance principle of {gn}.)

The first general invariance principle for partial sums of i.i.d. random vari-
ables is due to M. Donsker ([4]). Let C = C[0, 1] be the space of continuous
functions on [0, 1] and C be the Borel σ-field with respect to the uniform topol-
ogy, that is, for any x, y ∈ C,

ρ(x, y) = sup
t∈[0,1]

|x(t) − y(t)|.
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Denote W to be the Wiener measure on (C, C) and C∗ to be the space of bounded
continuous functions on (C, C). Let X = X [0, 1] be the space of continuous
functions except for finite points on [0, 1] and X∗ be the space of bounded
continuous functions on X with respect to the uniform topology. M. Donsker
([4]) obtained the following result: Let {Xn} be a sequence of i.i.d. random
variables. Define Sn =

∑n
i=1Xi and

xn(t, a1, . . . , an) =

{

ai√
n
, t ∈ ( i−1

n , i
n ], i = 1, . . . , n;

a1√
n
, t = 0.

(1.1)

For any f ∈ X∗, define

gn(a1, . . . , an) = f (xn (t, a1, . . . , an)) ,

then {Sn} satisfies the invariance principle of {gn} and

(1.2) lim
n→∞

P (gn(S1, . . . , Sn) < λ) = W(x ∈ C : f(x) < λ), λ ∈ (−∞,∞).

D. H. Hu ([9]) extended M. Donsker’s result to the case of random sums.
Let {Zn, n ≥ 1} be a sequence of positive integer valued random variables and
{cn, n ≥ 1} be a sequence of positive real numbers such that

(1.3) cn → ∞ and
Zn

cn

P−→ Z, n→ ∞,

where Z is a positive random variable independent of {Zn, n ≥ 1}, then (1.2)
is changed into

(1.4) lim
n→∞

P (gZn
(S1, . . . , SZn

) < λ) = W(x ∈ C : f(x) < λ), λ ∈ (−∞,∞).

In more recent literatures, (1.1) is often modified by

xn(t, a1, . . . , an) =

{

ai−1√
n

+ n(t− i−1
n )( ai√

n
− ai−1√

n
), t ∈ ( i−1

n , i
n ], i = 1, . . . , n;

0 =: a0, t = 0

and (1.2) can be written as the following version:

ψn(t) :=
1√
n

(

S[nt] + (nt− [nt])X[nt]+1

)

, t ∈ [0, 1],

then {ψn(t)}t∈[0,1]
d−→ SBM, where [x] is the maximal integer that no more

than x and SBM is a standard Brown motion on [0, 1]. (1.4) can be rewritten
accordingly.

This general case of invariance principle has been widely studied for many
topics (see P. Billingsley ([1]), P. Hall and C. C. Heyde ([8]), M. Peligrad ([11]),
Q. M. Shao ([13])). Recently, many researchers investigated the corresponding
results for triangular arrays of random variables. For example, A. De Acosta
([3]) derived the invariance principle for triangular arrays of row-wise i.i.d. B-
valued random vectors, where each row has an infinitely divisible distribution
(see also A. D’Aristotile ([2]), A. Rackauskas and C. Suquet ([12])).
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We are interested in the invariance principle for random partial sums pro-
cesses based on a double sequence of row-wise i.i.d. random variables {ξn,j, n ≥
0, j ≥ 1}, which arose from branching process in varying environment (see D.
H. Fearn ([7])).

Throughout this paper we assume that E(ξn,j) ≡ 0, V ar(ξn,j) ≡ 1, n ≥ 0,

j ≥ 1. Define T
(n)
m =

∑m
i=1 ξn,i, m ≥ 1 and

µ(n)
m (t) =

1√
m

(

T
(n)
[mt] + (mt− [mt])ξn,[mt]+1

)

, t ∈ [0, 1],

then we have the following result:

Theorem 1.1. Let {Zn, n ≥ 1}, {cn, n ≥ 1} and Z satisfy (1.3), where Z is

independent of {ξn,j, n ≥ 0, j ≥ 1}, then
{

µ
(n)
Zn

(t)
}

t∈[0,1]

d−→ SBM, n→ ∞.(1.5)

In Section 2, we give the main steps of the proof for Theorem 1.1. The
technical results needed in the proof are given in Section 3 and Section 4.

2. Sketch of the proof of Theorem 1.1

In this section, we give three main steps in proving Theorem 1.1. Our
main idea is to prove an equivalent condition such that the distribution of

{µ(n)
Zn

(t)}t∈[0,1] is weakly convergent to the distribution of a standard Brown
motion on [0, 1]. We follow the notations introduced in Section 1.

We always assume that k is a fixed positive integer, {αj, j = 1, . . . , k} and
{βj, j = 1, . . . , k} are fixed vectors in R

k. For any n ≥ 0, m ≥ 1, i = 1, . . . ,m,
j = 1, . . . , k, write

(2.1) S
(n)
i (m) =

T
(n)
i√
m
, ηj,m =

[

jm

k

]

, Ik,j =

(

j − 1

k
,
j

k

]

,

(2.2) E(n)
m =

{

ω : αj ≤ S
(n)
i (m) ≤ βj , η(j−1),m < i ≤ ηj,m, j = 1, . . . , k

}

,

(2.3) E = {x ∈ C : αj ≤ x(t) ≤ βj , t ∈ Ik,j , j = 1, . . . , k} .
The first step in proving Theorem 1.1 is:

Lemma 2.1. If the conditions in Theorem 1.1 are satisfied, we have

(2.4) lim
n→∞

P (E
(n)
Zn

) = W(E).

For any n ≥ 1, x ∈ C, j = 1, 2, . . . , k, define

(2.5) Rn = {ω | ω ∈ Ω, αj ≤ µ
(n)
Zn

(t) ≤ βj , t ∈ Ik,j , j = 1, . . . , k},

(2.6) p
(n)
j = sup

t∈Ik,j

µ
(n)
Zn

(t), q
(n)
j = inf

t∈Ik,j

µ
(n)
Zn

(t),
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(2.7) pj(x) = sup
t∈Ik,j

x(t), qj(x) = inf
t∈Ik,j

x(t).

The second step is to prove:

Lemma 2.2. If the conditions in Theorem 1.1 are satisfied, we have

(2.8) lim
n→∞

P (Rn) = W(E).

For any bounded and Borel measurable function g : R2k → R, one has

∇g := lim
n→∞

∫

Ω

g
(

p
(n)
1 , . . . , p

(n)
k , q

(n)
1 , . . . , q

(n)
k

)

dP(2.9)

=

∫

C

g(p1(x), . . . , pk(x), q1(x), . . . , qk(x))W(dx).

The last step is to prove:

Lemma 2.3. If the conditions in Theorem 1.1 are satisfied, for any h ∈ C∗

one has

(2.10) lim
n→∞

∫

Ω

h(µ
(n)
Zn

(t))dP =

∫

C

h(x)W(dx).

Theorem 1.1 follows from Lemma 2.3.

3. Proof of Lemma 2.1

We follow the notations introduced in above sections. The proof of Lemma
2.1 is divided into three steps. First, we prove that:

Lemma 3.1. Let {ln, n ≥ 1} be a sequence of positive integers with limn→∞ ln
= ∞. Then one has

(3.1) lim
n→∞

P
(

E
(n)
ln

)

= W(E).

Second, using Lemma 3.1 we prove that:

Lemma 3.2. Let {Zn, n ≥ 1} be a sequence of positive integer valued random

variables and {cn, n ≥ 1} be a sequence of positive real numbers such that

(3.2) cn → ∞ and
Zn

cn

P−→ c > 0, n→ ∞,

where c is a constant. Then we have

(3.3) lim
n→∞

P
(

E
(n)
Zn

)

= W(E).

Finally, we prove that Lemma 2.1 follows from Lemma 3.2.
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3.1. Proof of Lemma 3.1

Lemma 3.3 (c.f. [10]). Let {kn, n ≥ 0} be a sequence of positive integers with

kn → ∞. Then one has

T
(n)
kn√
kn

d−→ N(0, 1), n→ ∞.

Lemma 3.4. Let {(Y (n)
t1 , Y

(n)
t2 , . . . , Y

(n)
tm ), n ≥ 1} be a sequence of random vec-

tors taking values in R
m such that

ti > 0, i = 1, . . . ,m,
m
∑

i=1

ti ≤ 1,

for each n, {Y (n)
t1 , Y

(n)
t2 , . . . , Y

(n)
tm } are independent and for each i = 1, . . . ,m,

Y
(n)
ti

d−→ N(0, ti) when n → ∞. For any vectors {aj , 1 ≤ j ≤ m}, {bj, 1 ≤ j ≤
m} ∈ R

m, write

Gn =

{

ω : aj ≤
j
∑

i=1

Y
(n)
ti ≤ bj , 1 ≤ j ≤ m

}

,

G =

{

x ∈ C : aj ≤ x

(

j
∑

i=1

ti

)

≤ bj

}

.

Then one has

lim
n→∞

P (Gn) = W(G).(3.4)

Proof. Since for each i = 1, . . . ,m, Y
(n)
ti

d−→ N(0, ti) when n→ ∞, one has

Y
(n)
ti√
ti

d−→ N(0, 1), n→ ∞, i = 1, . . . ,m.

Note that for each n, {Y (n)
t1 , Y

(n)
t2 , . . . , Y

(n)
tm } are independent, by (4.16) and

(4.17) of P. Billingsley ([1, p. 26]) we know
(

Y
(n)
t1√
t1
,
Y

(n)
t2√
t2
, . . . ,

Y
(n)
tm√
tm

)

d−→ N(0, Im×m), n→ ∞,

where Im×m is the unit matrix of order m×m. Define

A =















√
t1

√
t1

√
t1 · · · √

t1
0

√
t2

√
t2 · · · √

t2
0 0

√
t3 · · · √

t3
...

...
... · · ·

...
0 0 0 · · · √

tm















,
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according to Theorem 5.1 of P. Billingsley ([1]), when n→ ∞, one has
(

Y
(n)
t1 , . . . ,

j
∑

i=1

Y
(n)
ti , . . . ,

m
∑

i=1

Y
(n)
ti

)

=

(

Y
(n)
t1√
t1
,
Y

(n)
t2√
t2
, . . . ,

Y
(n)
tm√
tm

)

· A d−→ N(0, Im×m) · A.

According to the definition of Wiener measure W(·) (see [1]), we complete
the proof of (3.4). �

Proof of Lemma 3.1. Fix n, for any 1 ≤ r ≤ ln, there exists {1 ≤ jr ≤ k} such
that

η(jr−1),ln < r ≤ ηjr ,ln ,

where ηj,m is defined in (2.1). Define

E
(n)
ln,r

=
{

ω : αj ≤ S
(n)
i (ln) ≤ βj , η(j−1),m < i ≤ ηj,m, 1 ≤ j ≤ jr − 1

}

⋂

{

ω : αjr ≤ S
(n)
i (ln) ≤ βjr , η(jr−1),m < i < r

}

⋂

{

ω : αjr ≤ S(n)
r (ln) ≤ βjr

}c

.

It is obvious that

1− P
(

E
(n)
ln

)

=

ln
∑

r=1

P
(

E
(n)
ln,r

)

,(3.5)

where E
(n)
m is defined in (2.2). Let χ be any fixed positive integers and ǫ be

any fixed positive real number. For any 1 ≤ j ≤ k, 0 ≤ d ≤ χ, define

ln(j, d) =

[

(j − 1)ln
k

+
d

χ
· ln
k

]

.

For any 1 ≤ r ≤ ln, there exists 0 ≤ dr ≤ χ such that

ln(jr, dr) < r ≤ ln(jr, dr + 1).

It is obvious that

P
(

E
(n)
ln,r

)

= P
(

E
(n)
ln,r

∩
(∣

∣

∣S
(n)
ln(jr ,dr+1)(ln)− S(n)

r (ln)
∣

∣

∣ ≥ ǫ
))

(3.6)

+ P
(

E
(n)
ln,r

∩
(∣

∣

∣S
(n)
ln(jr ,dr+1)(ln)− S(n)

r (ln)
∣

∣

∣ < ǫ
))

,

where S
(n)
i (m) is defined in (2.1). Note that

E(ξn,j) ≡ 0, V ar(ξn,j) ≡ 1, n ≥ 0, j ≥ 1,

ln(jr, dr + 1)− r ≤ ln(jr, dr + 1)− ln(jr, dr) ≤
[

ln
kχ

]

,
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according to Tchebychev’s inequality one has

P
(∣

∣

∣S
(n)
ln(jr ,dr+1)(ln)− S(n)

r (ln)
∣

∣

∣ ≥ ǫ
)

≤ 1

ǫ2kχ
,

which means that the first term on the right of (3.6) is bounded by 1/(ǫ2kχ).
For the second term on the right of (3.6), we define

F
(n)
ln

=
{

ω : αj ≤ S
(n)
ln(j,d)

(ln) ≤ βj , j = 1, . . . , k; d = 0, 1, . . . , χ
}

,

F
(n)
ln,ǫ

=
{

ω : αj + ǫ ≤ S
(n)
ln(j,d)

(ln) ≤ βj − ǫ, j = 1, . . . , k; d = 0, 1, . . . , χ
}

.

According to the definition of E
(n)
ln,r

, for any 1 ≤ r ≤ ln one has

∆
(n)
ln,r

:= E
(n)
ln,r

∩
(∣

∣

∣S
(n)
ln(jr ,dr+1)(ln)− S(n)

r (ln)
∣

∣

∣ < ǫ
)

⊂
{

ω : αjr ≤ S(n)
r (ln) ≤ βjr

}c

∩
(∣

∣

∣S
(n)
ln(jr ,dr+1)(ln)− S(n)

r (ln)
∣

∣

∣ < ǫ
)

⊂
{

ω : S
(n)
ln(jr,dr+1)(ln) < αjr + ǫ or S

(n)
ln(jr ,dr+1)(ln) > βjr − ǫ

}

⊂ [F
(n)
ln,ǫ

]c.

Note that r is arbitrary we know that

ln
⋃

r=1

∆
(n)
ln,r

⊂
[

F
(n)
ln,ǫ

]c

.

On the other hand, E
(n)
ln

⊂ F
(n)
ln

. By (3.5) and (3.6) one has

P
(

F
(n)
ln,ǫ

)

− 1

ǫ2kχ
≤ P

(

E
(n)
ln

)

≤ P
(

F
(n)
ln

)

.(3.7)

For any χ = 2T , where T is positive integer, define

Dχ =

{

x ∈ C : αj ≤ x
(

(j − 1)χ+ d

kχ

)

≤ βj , d = 1, 2, . . . , χ; j = 1, . . . , k

}

,

Dχ,ǫ =
{

x ∈ C : αj + ǫ ≤ x
(

(j − 1)χ+ d

kχ

)

≤ βj − ǫ, d = 1, 2, . . . , χ; j = 1, . . . , k
}

.

Taking

ti =
i

kχ
, Yti =

[iln/kχ]
∑

l=[(i−1)ln/kχ]+1

ξn,l√
ln
, i = 1, 2, . . . , kχ,

one can obtain that for fixed n, {Yti , i = 1, 2, . . . , kχ} are independent. Ac-
cording to Lemma 3.3 and Lemma 3.4 one has

lim
n→∞

P
(

F
(n)
ln,ǫ

)

= W(Dχ,ǫ) and lim
n→∞

P
(

F
(n)
ln

)

= W(Dχ).

Hold χ, ǫ fixed and let n→ ∞ in (3.7) we have

(3.8) W(Dχ,ǫ)−
1

ǫ2kχ
≤ lim inf

n→∞
P
(

E
(n)
ln

)

≤ lim sup
n→∞

P
(

E
(n)
ln

)

≤ W(Dχ).
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Note that
lim
χ→∞

W(Dχ) = W(E) and lim
χ→∞

W(Dχ,ǫ) = W(Eǫ),

where E is defined in (2.3) and

(3.9) Eǫ = {x ∈ C : αj + ǫ ≤ x(t) ≤ βj − ǫ, t ∈ Ij , j = 1, . . . , k}.
Note that when ǫ → 0 one has Eǫ ↑ E, then (3.1) is obtained if we first let
χ→ ∞ and then ǫ→ 0 in (3.8). �

3.2. Proof of Lemma 3.2

In the case of Lemma 3.2, for any c > ǫ > 0, with a large probability,
{Zn} is dominated in ((c− ǫ)cn, (c+ ǫ)cn) when n is sufficiently large. Taking
ln = [(c− ǫ)cn] and ln = [(c+ ǫ)cn] respectively in Lemma 3.1, it is reasonable
that we can obtain the conclusion of Lemma 3.2. Details are given below.

Proof of Lemma 3.2. Since Zn/cn
P−→ c when n → ∞, we know that for any

ε > 0, δ > 0, there exists N0 = N0(ε, δ) such that for any n ≥ N0 one has

(3.10) P (|Zn − ccn| ≥ εcn) < δ.

By (3.10) and P (E
(n)
Zn

) =
∑∞

m=1 P (E
(n)
m , Zn = m) one has

(3.11) In :=
∑

|m−ccn|<εcn

P
(

E(n)
m , Zn = m

)

≤ P
(

E
(n)
Zn

)

≤ δ + In.

For any n ≥ N0, denote

(3.12) Un = Un(c) := [(c− ε)cn], Vn = Vn(c) := [(c+ ε)cn].

According to the definition of ηj,m (see (2.1)), one has

0 ≤ ηj,Vn
− ηj,Un

≤ Vn − Un, j = 1, . . . , k;

η(j+1),Un
− ηj,Un

≥
[

Un

k

]

− 1 ≥
[

(c− ε)cn
k

]

− 2, j = 1, . . . , k − 1.

Then there exists a constant ε0 > 0 such that for any ε < ε0 one has

ηj,Un
≤ ηj,Vn

< η(j+1),Un
, j = 1, . . . , k − 1.

In addition,

ηj,Un
≤ ηj,m < η(j+1),Un

, j = 1, . . . , k − 1, Un ≤ m ≤ Vn.

If Un ≤ m ≤ Vn, that is, |m− ccn| < εcn, by the definition of E
(n)
m (see (2.2)),

E(n)
m ⊂

{

ω : αj ≤ S
(n)
i (m) ≤ βj , η(j−1),m < i ≤ ηj,Un

, j = 1, . . . , k
}

=

{

ω :

√

m

Un
αj ≤ S

(n)
i (Un) ≤

√

m

Un
βj, η(j−1),m < i ≤ ηj,Un

, 1 ≤ j ≤ k

}

.

For any η ∈ R, γ > 0 and real numbers a, b, denote

E(n)
m,η =

{

ω : αj − η ≤ S
(n)
i (m) ≤ βj + η,(3.13)
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ηj,m < i ≤ η(j+1),m, j = 1, . . . , k
}

,

A
(n)
m,i(a, b) =

{

ω : a ≤ S
(n)
i (m) ≤ b

}

, Un ≤ m ≤ Vn,(3.14)

B
(n)
i,j (γ) =

{

ω : |S(n)
η(j−1),Vn

+1(Un)− S
(n)
i (Un)| < γ

}

,(3.15)

η(j−1),Un
< i ≤ η(j−1),Vn

.

Note that for any Un ≤ m ≤ Vn one has

A
(n)
Un,i

(√

m

Un
αj ,

√

m

Un
βj

)

⊂ A
(n)
Un,i

(αj − d, βj + d) ,

where

d = d(c) :=

{

max
n≥N0

√

Vn − Un

Un

}

· max
1≤j≤k

{|αj|, |βj |}(3.16)

≤
{

max
n≥N0

√

2εcn
[(c− ε)cn]

}

max
1≤j≤k

{|αj |, |βj |}.

Thus,

E(n)
m ⊂

k
⋂

j=1

ηj,Un
⋂

i=η(j−1),m+1

A
(n)
Un,i

(√

m

Un
αj ,

√

m

Un
βj

)

⊂
k
⋂

j=1

ηj,Un
⋂

i=η(j−1),m+1

A
(n)
Un,i (αj − d, βj + d) .

Then

E(n)
m ⊂











k
⋂

j=1

ηj,Un
⋂

i=η(j−1),m+1

A
(n)
Un,i

(αj − d, βj + d)





∩





k
⋂

j=1

η(j−1),Vn
⋂

i=η(j−1),Un
+1

B
(n)
i,j (γ)











⋃





k
⋂

j=1

η(j−1),Vn
⋂

i=η(j−1),Un
+1

B
(n)
i,j (γ)





c

⊂





k
⋂

j=1

ηj,Vn
⋂

i=η(j−1),Un
+1

A
(n)
Un,i

(αj − d− γ, βj + d+ γ)





∪





k
⋂

j=1

η(j−1),Vn
⋂

i=η(j−1),Un
+1

B
(n)
i,j (γ)





c

⊂ E
(n)
Un,ρ ∪G(n)

γ ,

where

ρ = ρ(c) := d(c) + γ,(3.17)
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G(n)
γ =

k
⋃

j=1

ηj,Vn
⋃

i=η(j−1),Un
+1

[B
(n)
i,j (γ)]

c

=

{

ω : max
η(j−1),Un

<i≤η(j−1),Vn
,1≤j≤k

|S(n)
η(j−1),Vn

+1(Un)− S
(n)
i (Un)| ≥ γ

}

.

Similarly, when Un ≤ m ≤ Vn, that is, |m− ccn| < εcn, one has

E(n)
m ⊃

{

ω : αj ≤ S
(n)
i (m) ≤ βj, η(j−1),m < i ≤ ηj,Vn

, j = 1, . . . , k
}

⊃ E
(n)
Vn,−ρ −G(n)

γ .

Note that E(ξn,j) ≡ 0, V ar(ξn,j) ≡ 1, n ≥ 0, j ≥ 1, according to Kol-
mogorov’s inequality one has

P (G(n)
γ ) ≤

k
∑

j=1

P

(

max
η(j−1),Un

<i≤η(j−1),Vn

|S(n)
η(j−1),Vn

+1(Un)− S
(n)
i (Un)| ≥ γ

)

≤
k
∑

j=1

η(j−1),Vn
− η(j−1),Un

Unγ2
≤ k(Vn − Un)

Unγ2
≤ 2kcnǫ

Unγ2
.

According to the definition of In (see (3.11)) one has

In ≤
∑

|m−ccn|<εcn

P (E
(n)
Un,ρ

∪G(n)
γ , Zn = m)(3.18)

≤
∑

|m−ccn|<εcn

P (E
(n)
Un,ρ

, Zn = m) +
2kcnǫ

Unγ2

≤ P (E
(n)
Un,ρ

) +
2kcnǫ

Unγ2
.

Similarly, when Un ≤ m ≤ Vn, one has

(3.19) In ≥ P (E
(n)
Vn,−ρ)− δ − 2kcnǫ

Unγ2
.

By (3.11), (3.18) and (3.19) one has

(3.20) P (E
(n)
Vn,−ρ)− δ − 2kcnǫ

Unγ2
≤ P (E

(n)
Zn

) ≤ δ + P (E
(n)
Un,ρ) +

2kcnǫ

Unγ2
.

According to Lemma 3.1, if we let n→ ∞ in (3.20) we have

W(E−ρ)− δ − 2kǫ

(c− ǫ)γ2
≤ lim inf

n→∞
P (E

(n)
Zn

)(3.21)

≤ lim sup
n→∞

P (E
(n)
Zn

)

≤ W(Eρ) + δ +
2kǫ

(c− ǫ)γ2
,
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where Eρ is defined in (3.9). Note that when ǫ→ 0 one has ρ ↓ γ, then Eρ ↑ Eγ ,
if we first let δ → 0 and then ǫ→ 0 in (3.21) we have

W(E) ≤ lim inf
n→∞

P (E
(n)
Zn

) ≤ lim sup
n→∞

P (E
(n)
Zn

) ≤ W(E),

which implies (3.3). �

3.3. Proof of Lemma 2.1

In the case of Lemma 2.1, Z is positive almost everywhere. Lemma 3.2 works
on each {Z = c}. Finally, we can get Lemma 2.1. Details are given below.

Proof of Lemma 2.1. Denote the distribution function of Z is G(x), according
to the definition of conditional expectation one has

(3.22) P (E
(n)
Zn

) =

∫

Ω

P (E
(n)
Zn

|Z)(ω)P (dω) =
∫ ∞

0

P (E
(n)
Zn

|Z = c)dG(c).

It is obvious that

P (E
(n)
Zn

|Z = c) =
∑

|m−ccn|<εcn

P (E(n)
m , Zn = m|Z = c)(3.23)

+
∑

|m−ccn|≥εcn

P (E(n)
m , Zn = m|Z = c)

=: I
(n)
1 (c) + I

(n)
2 (c).

Note that I
(n)
2 ≤ P (|Zn/cn − c| ≥ ε|Z = c) and Zn/cn

P−→ Z we know that
∫ ∞

0

I
(n)
2 (c)dG(c) ≤

∫ ∞

0

P

(∣

∣

∣

∣

Zn

cn
− c

∣

∣

∣

∣

≥ ε|Z = c

)

dG(c)(3.24)

=

∫ ∞

0

P

(∣

∣

∣

∣

Zn

cn
− Z

∣

∣

∣

∣

≥ ε|Z = c

)

dG(c)

= P

(∣

∣

∣

∣

Zn

cn
− Z

∣

∣

∣

∣

≥ ε

)

→ 0.

For any c > 0 and n ≥ 1, according to the proof of Lemma 3.2 we know that
when Un(c) ≤ m ≤ Vn(c) one has

E
(n)
Vn(c),−ρ(c) −G(n)

γ ⊂ E(n)
m ⊂ E

(n)
Un(c),ρ(c)

∪G(n)
γ ,

where Un(c), Vn(c) are defined in (3.12), E
(n)
m,η is defined in (3.13) and ρ(c), G

(n)
γ

are defined in (3.17), so

Λn(c) := P (E
(n)
Vn(Z),−ρ(Z)|Z = c)(3.25)

− P

(∣

∣

∣

∣

Zn

cn
− Z

∣

∣

∣

∣

≥ ε|Z = c

)

− P (G(n)
γ |Z = c)

≤ I
(n)
1 (c) ≤ P (E

(n)
Un(Z),ρ(Z)|Z = c) + P (G(n)

γ |Z = c).
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Note that all the terms in (3.25) are bounded and Borel measurable with re-
spect to c, so all the terms are integral. The number of the possible values
of (Un(c), ρ(c)) is countable, then Un(c), ρ(c) are measurable with respect to

c, so if P (E
(n)
Un(c),ρ(c)

) is viewed as the function of c, it is Borel measurable.

According to the independence of Z and {ξn,j, n ≥ 0, j ≥ 1} one has
∫ ∞

0

P (E
(n)
Un(Z),ρ(Z)|Z = c)dG(c) =

∫ ∞

0

P (E
(n)
Un(c),ρ(c)

|Z = c)dG(c)(3.26)

=

∫ ∞

0

P (E
(n)
Un(c),ρ(c)

)dG(c).

Let n→ ∞ in (3.26), by Lemma 3.2 and Lebesgue’s denominating convergence
theorem,

(3.27) lim
n→∞

∫ ∞

0

P (E
(n)
Un(Z),ρ(Z)|Z = c)dG(c) =

∫ ∞

0

W(Eρ(c))dG(c),

where Eρ(c) is defined in (3.9). Note that when ε → 0 and γ → 0 one has
Eρ(c) ↑ E, by (3.27) and Lebesgue’s denominating convergence theorem,

lim
γ→0

lim
ε→0

lim
n→∞

∫ ∞

0

P (E
(n)
Un(Z),ρ(Z)|Z = c)dG(c) =

∫ ∞

0

lim
γ→0

lim
ε→0

W(Eρ(c))dG(c)

= W(E).

Similarly, we have

limγ→0 limε→0 limn→∞
∫∞
0
P (E

(n)
Vn(Z),−ρ(Z)|Z = c)dG(c) = W(E),

limγ→0 limε→0 limn→∞
∫∞
0
P (G

(n)
γ |Z = c)dG(c) = 0.

Take the integrations of all the terms in (3.25) with respect to G(c) and let
first n→ ∞, then ε→ 0 and finally γ → 0, one has

(3.28) lim
ε→0

lim
n→∞

∫ ∞

0

I
(n)
1 dG(c) = W(E).

By (3.22), (3.23), (3.24) and (3.28) one has (2.4). �

4. Proofs of Lemma 2.2 and Lemma 2.3

In this section, we prove the last two lemmas. For Lemma 2.2, our main

idea is to prove that |P (Rn) − P (E
(n)
Zn

)| is small when n is sufficiently large,
so Lemma 2.2 follows from Lemma 2.1. Lemma 2.2 and an approximation
theorem of M. Donsker guarantee the correctness of Lemma 2.3.

Proof of Lemma 2.2. Note that for any j = 1, . . . , k,

[(j − 1)Zn

k ] + 2− 1

Zn
≥ (j − 1)Zn

k − 1 + 2− 1

Zn
=
j − 1

k
and

[j Zn

k ]

Zn
≤ j

k
,
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one has IZn,[(j−1)Zn
k

]+2, . . . , IZn,[j
Zn
k

] ⊂ Ik,j , j = 1, . . . , k, where Ik,j is defined

in (2.1). Define

J
(n)
k,j = Ik,j −





[j Zn
k

]
⋃

i=[(j−1)Zn
k

]+2

IZn,i



 , Πn :=

k
⋂

j=1

{αj ≤ µ
(n)
Zn

(t) ≤ βj , t ∈ J
(n)
k,j },

we have

Rn = Πn ∩
k
⋂

j=1

{

αj ≤ S
(n)
i (Zn) ≤ βj ,

[

(j − 1)
Zn

k

]

< i ≤
[

j
Zn

k

]}

= Πn ∩ E(n)
Zn
.

But

J
(n)
k,j =

(

j − 1

k
,
[(j − 1)Zn/k] + 2− 1

Zn

]

⋃

(

[jZn/k]

Zn
,
j

k

]

⊂
(

[(j − 1)Zn/k]

Zn
,
[(j − 1)Zn/k] + 1

Zn

]

⋃

(

[jZn/k]

Zn
,
[jZn/k] + 1

Zn

]

= IZn,[(j−1)Zn
k

]+1

⋃

IZn,[j
Zn
k

]+1.

Therefore,

Πn ⊃
k
⋂

j=1

{

αj ≤ µ
(n)
Zn

(t) ≤ βj , t ∈ IZn,[(j−1)Zn
k

]+1

⋃

IZn,[j
Zn
k

]+1

}

=

k
⋂

j=1

{αj ≤ S
(n)
η(j−1),Zn

+1(Zn) ≤ βj , αj ≤ S
(n)
ηj,Zn+1(Zn) ≤ βj}

∩
k
⋂

j=1

{αj ≤ S(n)
η(j−1),Zn

(Zn) ≤ βj , αj ≤ S(n)
ηj,Zn

(Zn) ≤ βj}.

For any η > 0, define

Tn,η = {ω | max
1≤j≤k

{|S(n)
ηj,Zn+1 − S(n)

ηj,Zn
|} ≥ η}.

Thus,

E
(n)
Zn

⊃ Rn ⊃
k
⋂

j=1

{αj ≤ S
(n)
i (Zn) ≤ βj , η(j−1),Zn

≤ i ≤ ηj,Zn
+ 1}(4.1)

⊃ E
(n)
Zn,−η ∩ T c

n,η,

where E
(n)
Zn,−η is defined in (3.13). Note that

(4.2) P (Tn,η) ≤
k
∑

j=1

P (|S(n)
ηj,Zn+1(Zn)− S(n)

ηj,Zn
(Zn)| ≥ η)
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and

P
(

|S(n)
ηj,Zn+1(Zn)− S(n)

ηj,Zn
(Zn)| ≥ η

)

=

∫ ∞

0

P (|S(n)
ηj,Zn+1(Zn)− S(n)

ηj,Zn
(Zn)| ≥ η|Z = c)dG(c)

≤
∫ ∞

0

∑

|m−ccn|<εcn

P (|S(n)
ηj,Zn+1(Zn)− S(n)

ηj,Zn
(Zn)| ≥ η, Zn = m|Z = c)dG(c)

+

∫ ∞

0

∑

|m−ccn|≥εcn

P (Zn = m|Z = c)dG(c) =: I1 + I2,

where

I1 =

∫ ∞

0

∑

|m−ccn|<εcn

P (| ξn,1√
m
| ≥ η|Z = c)dG(c)

≤
∫ ∞

0

2ǫcnP (|
ξn,1

√

(c− ǫ)cn
| ≥ η|Z = c)dG(c)

= 2ǫcnP (|ξn,1| ≥ η
√

(c− ǫ)cn) ≤
2ǫcn

η2(c− ǫ)cn
,

and

I2 ≤
∫ ∞

0

P (|Zn

cn
− Z| ≥ ǫ|Z = c)dG(c) = P

(∣

∣

∣

∣

Zn

cn
− Z

∣

∣

∣

∣

≥ ǫ

)

,

so we have

(4.3) P (Tn,η) ≤ k

[

2ǫcn
η2(c− ǫ)cn

+ P (|Zn

cn
− Z| ≥ ǫ)

]

.

Note that Zn/cn
P−→ Z, by (4.1), (4.3) and Lemma 2.2 we have

W(E) = lim
n→∞

P (E
(n)
Zn

) ≥ lim sup
n→∞

P (Rn) ≥ lim inf
n→∞

P (Rn)(4.4)

≥ W(E−η)−
2kǫ

η2(c− ǫ)
.

Let first ǫ→ 0, then η → 0 in (4.4) one has (2.8).
Define B = {(t1, . . . , t2k) : −∞ < ti ≤ βi, αi ≤ ti+k < ∞, i = 1, . . . , k}.

Note that by (2.3), (2.5), (2.6) and (2.7) we have

Rn = {ω | ω ∈ Ω, αj ≤ µ
(n)
Zn

(t) ≤ βj, t ∈ Ik,j , j = 1, . . . , k}(4.5)

= {ω | (p(n)1 , . . . , p
(n)
k , q

(n)
1 , . . . , q

(n)
k ) ∈ B},

E = {x ∈ C | αj ≤ x(t) ≤ βj , t ∈ Ik,j , j = 1, . . . , k}(4.6)

= {x ∈ C | (p1(x), . . . , pk(x), q1(x), . . . , qk(x)) ∈ B}.
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Let IB be the indictor function of B, by (4.5) and (4.6), we know that (2.8)
is equivalent to

∇IB := lim
n→∞

∫

Ω

IB

(

p
(n)
1 , . . . , p

(n)
k , q

(n)
1 , . . . , q

(n)
k

)

dP(4.7)

=

∫

C

IB(p1(x), . . . , pk(x), q1(x), . . . , qk(x))W(dx).

According to the proof of Theorem 2.3 of D. H. Hu ([9]) we know that the
σ-field generated by all the sets like B is the Borel σ-field of R

2k. By the
monotone class theorem one has (2.9). �

Lemma 4.1 (c.f. [4]). For any h ∈ C∗ and ǫ > 0, there exist h1, h2 ∈ X∗ such

that

(4.8) h1(x) ≤ h(x) ≤ h2(x), ∀x ∈ X,

∫

C

[h2(x) − h1(x)]W(dx) ≤ ǫ

and hi(x), i = 1, 2 can be rewritten by

(4.9) hi(x) = fi(p1(x), . . . , pk(x), q1(x), . . . , qk(x)),

where fi, i = 1, 2 are two bounded and Borel measurable functions on R
2k.

Proof of Lemma 2.3. Lemma 2.3 follows from (2.9) and Lemma 4.1. �
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