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COEFFICIENT BOUNDS FOR CERTAIN SUBCLASSES OF

MEROMORPHIC AND BI-UNIVALENT FUNCTIONS

Trailokya Panigrahi

Abstract. In the present investigation, the author introduces two in-
teresting subclasses of normalized meromorphic univalent functions w =
f(z) defined on ∆̃ := {z ∈ C : 1 < |z| < ∞} whose inverse f−1(w) is

also univalent meromorphic in ∆̃. Estimates for the initial coefficients are
obtained for the functions in these new subclasses.

1. Introduction

Let Σ′ denote the family of all meromorphic univalent functions of the form:

(1.1) f(z) = z +

∞
∑

n=0

bn

zn

defined on the domain ∆̃ := {z : z ∈ C and 1 < |z| < ∞} except for a simple
pole at ∞ with residue 1. Let Σ′

0 be the subclass of Σ′ for which b0 = 0. It is
well-known that every function f ∈ Σ′ has an inverse f−1, defined by

f−1 (f(z)) = z (z ∈ ∆̃),

and

f
(

f−1(w)
)

= w (M < |w| < ∞, M > 0).

If G is the inverse of a function f ∈ Σ′ (i.e., G = f−1), then G has an expansion
of the form

(1.2) G(w) = w +

∞
∑

n=0

Bn

wn

in some neighborhood of w = ∞. A simple calculation shows that the function
G, is given by

(1.3) G(w) = f−1(w) = w−b0−
b1

w
−
b2 + b0b1

w2
−
b3 + 2b0b2 + b20b1 + b21

w3
+· · · .
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Analogous to the bi-univalent analytic functions (for recent expository work
on bi-univalent functions, see [2, 8, 9]), a function f ∈ Σ′ is said to be mero-

morphic bi-univalent in ∆̃ if both f and G are univalent in ∆̃. The class of all
meromorphic bi-univalent functions is denoted by Σ′

b
.

In literature, several authors were investigated the coefficient estimates of
meromorphic univalent functions. For f ∈ Σ′

0, it follows from the area theorem
that |b1| ≤ 1. Schiffer [5] obtained the sharp estimates |b2| ≤

2

3
for f ∈ Σ′

0.

Duren [1] gave an elementary proof of the inequality |bn| ≤
2

n+1
for f ∈ Σ′

with bk = 0 for 1 ≤ k < n

2
. For G ∈ Σ′

0, Springer [7] used variational methods
to prove that

|B3 +
1

2
B2

1 | ≤
1

2
and |B3| ≤ 1

and conjectured that

|B2n−1| ≤
(2n− 2)!

n!(n− 1)!
n = 3, 4, 5, . . . .

Kubota [3] has proved that Springer conjecture is true for n = 3, 4, 5 by an
elementary application of Grunsky’s inequalities. Furthermore, for G ∈ Σ′

0,
Schober [6] obtained sharp bounds for the coefficients B2n−1, 1 ≤ n ≤ 7.

The object of the present paper is to introduce two new subclasses of the
function class Σ′

b
and find estimates for the initial coefficients b0, b1 and b2 for

functions in these new subclasses.
We need the following lemma for our further investigation.

Lemma 1.1 ([4]). If h ∈ P, then |ck| ≤ 2 for each k, where P is the family of

all functions h analytic in ∆ := {z : z ∈ C and |z| < 1} for which ℜ(h(z)) > 0
where

h(z) = 1 + c1z + c2z
2 + c3z

3 + · · · (z ∈ ∆).

2. Coefficient bounds for the function class MΣ
′

b
(α, λ)

Definition 2.1. A function f(z) ∈ Σ′

b
given by (1.1) is said to be in the class

MΣ′

b
(α, λ) if the following conditions are satisfied:

(2.1)
∣

∣

∣

∣

arg

{

λ
zf ′(z)

f(z)
+ (1− λ)

(

1 +
zf ′′(z)

f ′(z)

)}∣

∣

∣

∣

<
απ

2
(0 < α ≤ 1, λ ≥ 1, z ∈ ∆̃)

and
(2.2)
∣

∣

∣

∣

arg

{

λ
wG′(w)

G(w)
+ (1− λ)

(

1 +
wG′′(w)

G′(w)

)}∣

∣

∣

∣

<
απ

2
(0 < α ≤ 1, λ ≥ 1, w ∈ ∆̃),

where the function G is given by (1.3).

For λ = 1, we denote the class MΣ′

b
(α, λ) = MΣ′

b
(α).

We state and prove our main results.
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Theorem 2.2. Let f ∈ MΣ′

b
(α, λ). Then

(2.3) |b0| ≤
2α

λ
,

(2.4) |b1| ≤
α

2λ− 1

√

(α− 2)2 +
4α2

λ2
,

and

(2.5) |b2| ≤
2α

3(3λ− 2)

[

2

{

6α2 − λ2(α2 − 3α+ 2)

3λ2

}

+ 3− 2α

]

.

Proof. Since f ∈ MΣ′

b
(α, λ), there exist two functions p and q such that

(2.6) λ
zf ′(z)

f(z)
+ (1− λ)

(

1 +
zf ′′(z)

f ′(z)

)

= (p(z))
α

and

(2.7) λ
wG′(w)

G(w)
+ (1− λ)

(

1 +
wG′′(w)

G′(w)

)

= (q(w))
α
,

respectively, where p(z) and q(w) satisfy the inequalities ℜ(p(z)) > 0 (z ∈ ∆̃)

and ℜ(q(w)) > 0 (w ∈ ∆̃).
Furthermore, the functions p(z) and q(w) have the forms:

p(z) = 1 +
c1

z
+

c2

z2
+

c3

z3
+ · · · (z ∈ ∆̃)

and

q(w) = 1 +
d1

w
+

d2

w2
+

d3

w3
+ · · · (w ∈ ∆̃).

By definition of f and G, we have

λ
zf ′(z)

f(z)
+ (1 − λ)

(

1 +
zf ′′(z)

f ′(z)

)

(2.8)

= 1−
λb0

z
+

λb20 + 2(1− 2λ)b1
z2

−
λb30 − 3λb0b1 − 3(2− 3λ)b2

z3
+ · · ·

and

λ
wG′(w)

G(w)
+ (1− λ)

(

1 +
wG′′(w)

G′(w)

)

(2.9)

= 1 +
λb0

w
+

λb20 − 2(1− 2λ)b1
w2

+
λb30 − 3(2− 3λ)b2 − 6(1− 2λ)b0b1

w3
+ · · · .

A simple calculation shows

(p(z))
α
= 1 +

αc1

z
+

1

2
α(α − 1)c21 + αc2

z2
(2.10)

+
1

6
α(α− 1)(α− 2)c31 + α(α− 1)c1c2 + αc3

z3
+ · · ·
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and

(q(w))
α
= 1 +

αd1

w
+

1

2
α(α− 1)d21 + αd2

w2
(2.11)

+
1

6
α(α− 1)(α− 2)d31 + α(α − 1)d1d2 + αd3

w3
+ · · · .

Using (2.8), (2.10) in (2.6) and (2.9), (2.11) in (2.7), we get

(2.12) −λb0 = αc1,

(2.13) λb20 + 2(1− 2λ)b1 =
1

2
α(α − 1)c21 + αc2,

(2.14) −λb30+3λb0b1+3(2−3λ)b2 =
α(α − 1)(α− 2)

6
c31+α(α−1)c1c2+αc3,

(2.15) λb0 = αd1,

(2.16) λb20 − 2(1− 2λ)b1 =
1

2
α(α− 1)d21 + αd2

and
(2.17)

λb30 − 6(1− 2λ)b0b1 − 3(2− 3λ)b2 =
α(α − 1)(α− 2)

6
d31 + α(α− 1)d1d2 + αd3.

From (2.12) and (2.15), it follows that

(2.18) b0 = −
αc1

λ
=

αd1

λ
(c1 = −d1)

and

(2.19) b20 =
α2

2λ2
(c21 + d21).

As ℜ(p(z)) > 0 in ∆̃, the function p(1
z
) ∈ P . Similarly q( 1

w
) ∈ P . So, the

coefficients of p(z) and q(w) satisfy the inequality of Lemma 1.1. Applications
of triangle inequality and followed by Lemma 1.1 in (2.19) give us the required
estimates on b0 as asserted in (2.3). Also, the estimates on b0 follows from the
direct consequence of (2.12).

By squaring and adding (2.13) and (2.16), using (2.19) in the computation
leads to

b21 =
α2

8(2λ− 1)2

[

(α− 1)2

4
(c41 + d41) + (c22 + d22) + (α− 1)(c21c2 + d21d2)

−
α2

2λ2
(c41 + d41 + 2c21d

2
1)

]

,

which in turn yields the estimates on b1 given in (2.4).
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Finally, to determine the bounds on b2, consider the sum of (2.14) and (2.17)
with c1 = −d1, we have

(2.20) b0b1 =
1

3(5λ− 2)
[α(α− 1)c1(c2 − d2) + α(c3 + d3)] .

Subtracting (2.17) from (2.14) with c1 = −d1, we obtain

−6(3λ− 2)b2 = 2λb30 + 3(3λ− 2)b0b1 +
α(α − 1)(α− 2)

3
c31(2.21)

+ α(α − 1)c1(c2 + d2) + α(c3 − d3).

Using (2.18) and (2.20) in (2.21) gives

6(3λ− 2)

α
b2 =

6α2 − λ2(α2 − 3α+ 2)

3λ2
c31 +

4(1− α)(2λ− 1)

5λ− 2
c1c2

+
2λ(1− α)

5λ− 2
c1d2 −

4(2λ− 1)

5λ− 2
c3 +

2λ

5λ− 2
d3.

Finally, an application of Lemma 1.1 for the above equation immediately yields
the desired estimates on b2 given by (2.5). The proof of Theorem 2.2 is thus
completed. �

Taking λ = 1 in Theorem 2.2, we get the following results.

Corollary 2.3. Let f ∈ MΣ′

b
(α). Then

|b0| ≤ 2α,

|b1| ≤ α
√

5α2 − 4α+ 4,

and

|b2| ≤
10α

9
(2α2 + 1).

3. Coefficient bounds for the function class TΣ
′

b
(β, λ)

Definition 3.1. A function f(z) ∈ Σ′

b
given by (1.1) is said to be in the class

TΣ′

b
(β, λ) if the following conditions are satisfied:

(3.1) ℜ

{

λ
zf ′(z)

f(z)
+ (1− λ)

(

1 +
zf ′′(z)

f ′(z)

)}

> β (0 ≤ β < 1, λ ≥ 1, z ∈ ∆̃)

and
(3.2)

ℜ

{

λ
wG′(w)

G(w)
+ (1− λ)

(

1 +
wG′′(w)

G′(w)

)}

> β (0 ≤ β < 1, λ ≥ 1, w ∈ ∆̃),

where the function G is the inverse of f given by (1.3).

For λ = 1, we use the notation:

TΣ′

b
(β, λ) = TΣ′

b
(β).
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Theorem 3.2. Let f(z) given by (1.1) be in the class TΣ′

b
(β, λ). Then

(3.3) |b0| ≤
2(1− β)

λ
,

(3.4) |b1| ≤
(1 − β)

2λ− 1

√

1 +
4(1− β)2

λ2
,

and

(3.5) |b2| ≤
2(1− β)

3(3λ− 2)

[

1 +
4(1− β)2

λ2

]

.

Proof. Let f ∈ TΣ′

b
(β, λ). Then, by definition of the class TΣ′

b
(β, λ),

(3.6) λ
zf ′(z)

f(z)
+ (1− λ)

(

1 +
zf ′′(z)

f ′(z)

)

= β + (1− β)p(z)

and

(3.7) λ
wG′(w)

G(w)
+ (1− λ)

(

1 +
wG′′(w)

G′(w)

)

= β + (1 − β)q(w),

where p and q are as in Theorem 2.2.
Equating coefficients in (3.6) and (3.7) yield

(3.8) −λb0 = (1− β)c1,

(3.9) λb20 + 2(1− 2λ)b1 = (1 − β)c2,

(3.10) −λb30 + 3λb0b1 + 3(2− 3λ)b2 = (1− β)c3,

and

(3.11) λb0 = (1− β)d1,

(3.12) λb20 − 2(1− 2λ)b1 = (1− β)d2,

(3.13) λb30 − 3(2− 3λ)b2 − 6(1− 2λ)b0b1 = (1− β)d3.

From (3.8) and (3.11), we get

c1 = −d1

and

(3.14) b20 =
(1− β)2

2λ2
(c21 + d21).

An application of triangle inequality and Lemma 1.1 in (3.14) give the desired
estimate on b0 as asserted in (3.3). The estimate on b0 also follows from the
direct consequence of (3.8).

Next, to determine bound on b1, squaring and adding (3.9) and (3.12), we
obtain

(3.15) 8(1− 2λ)2b21 + 2λ2b40 = (1 − β)2(c22 + d22).
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Using (3.14) in (3.15) gives

b21 =
1

8(1− 2λ)2

[

(1 − β)2(c22 + d22)−
(1− β)4

2λ2 (c41 + d41 + 2c21d
2
1)

]

.

An application of Lemma 1.1 in the above equation, yields the required estimate
on b1 as asserted in (3.4).

Finally, in order to obtain the bound on b2, adding (3.10) and (3.13) yields

(3.16) b0b1 =
(1− β)

3(5λ− 2)
(c3 + d3).

Subtracting (3.13) from (3.10), we obtain

(3.17) −6(3λ− 2)b2 = 2λb30 + 3(3λ− 2)b0b1 + (1 − β)(c3 − d3).

Using (3.8) and (3.16) in (3.17) lead to

(3.18) b2 =
(1− β)

3(3λ− 2)

[

(1 − β)2

λ2
c31 −

2(2λ− 1

5λ− 2
c3 +

λ

5λ− 2
d3

]

,

which eventually leads to the desired estimates (3.5) on b2. The proof of The-
orem 3.2 is thus completed. �

Taking λ = 1 in Theorem 3.2, we the get the following result.

Corollary 3.3. Let the function f(z) given by (1.1) be in the class TΣ′

b
(β).

Then

|b0| ≤ 2(1− β),

|b1| ≤ (1 − β)
√

4β2 − 4β + 5

and

|b3| ≤
2(1− β)

3
(4β2 − 4β + 5).

Remark 3.4. From the above discussion it is cleared that the estimates of b0, b1
and b2 in Theorem 2.2 when α = 1 is the same as the corresponding estimates
in Theorem 3.2 when β = 0.

References

[1] P. L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28
(1971), 169–172.

[2] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett.
24 (2011), no. 9, 1569–1973.

[3] Y. Kubota, Coefficients of meromorphic univalent functions, Kōdai Math. Sem. Rep. 28
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