# COEFFICIENT BOUNDS FOR CERTAIN SUBCLASSES OF MEROMORPHIC AND BI-UNIVALENT FUNCTIONS 

Trailokya Panigrahi


#### Abstract

In the present investigation, the author introduces two interesting subclasses of normalized meromorphic univalent functions $w=$ $f(z)$ defined on $\tilde{\Delta}:=\{z \in \mathbb{C}: 1<|z|<\infty\}$ whose inverse $f^{-1}(w)$ is also univalent meromorphic in $\tilde{\Delta}$. Estimates for the initial coefficients are obtained for the functions in these new subclasses.


## 1. Introduction

Let $\Sigma^{\prime}$ denote the family of all meromorphic univalent functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=0}^{\infty} \frac{b_{n}}{z^{n}} \tag{1.1}
\end{equation*}
$$

defined on the domain $\tilde{\Delta}:=\{z: z \in \mathbb{C}$ and $1<|z|<\infty\}$ except for a simple pole at $\infty$ with residue 1 . Let $\Sigma_{0}^{\prime}$ be the subclass of $\Sigma^{\prime}$ for which $b_{0}=0$. It is well-known that every function $f \in \Sigma^{\prime}$ has an inverse $f^{-1}$, defined by

$$
f^{-1}(f(z))=z \quad(z \in \tilde{\Delta})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad(M<|w|<\infty, M>0) .
$$

If $G$ is the inverse of a function $f \in \Sigma^{\prime}$ (i.e., $G=f^{-1}$ ), then $G$ has an expansion of the form

$$
\begin{equation*}
G(w)=w+\sum_{n=0}^{\infty} \frac{B_{n}}{w^{n}} \tag{1.2}
\end{equation*}
$$

in some neighborhood of $w=\infty$. A simple calculation shows that the function $G$, is given by
(1.3) $G(w)=f^{-1}(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{2}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}+\cdots$.

Received May 28, 2012.
2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
Key words and phrases. meromorphic functions, univalent functions, bi-univalent functions, inverse functions, coefficient bounds.

Analogous to the bi-univalent analytic functions (for recent expository work on bi-univalent functions, see $[2,8,9]$ ), a function $f \in \Sigma^{\prime}$ is said to be meromorphic bi-univalent in $\tilde{\Delta}$ if both $f$ and $G$ are univalent in $\tilde{\Delta}$. The class of all meromorphic bi-univalent functions is denoted by $\Sigma_{b}^{\prime}$.

In literature, several authors were investigated the coefficient estimates of meromorphic univalent functions. For $f \in \Sigma_{0}^{\prime}$, it follows from the area theorem that $\left|b_{1}\right| \leq 1$. Schiffer [5] obtained the sharp estimates $\left|b_{2}\right| \leq \frac{2}{3}$ for $f \in \Sigma_{0}^{\prime}$. Duren [1] gave an elementary proof of the inequality $\left|b_{n}\right| \leq \frac{2}{n+1}$ for $f \in \Sigma^{\prime}$ with $b_{k}=0$ for $1 \leq k<\frac{n}{2}$. For $G \in \Sigma_{0}^{\prime}$, Springer [7] used variational methods to prove that

$$
\left|B_{3}+\frac{1}{2} B_{1}^{2}\right| \leq \frac{1}{2} \text { and }\left|B_{3}\right| \leq 1
$$

and conjectured that

$$
\left|B_{2 n-1}\right| \leq \frac{(2 n-2)!}{n!(n-1)!} \quad n=3,4,5, \ldots
$$

Kubota [3] has proved that Springer conjecture is true for $n=3,4,5$ by an elementary application of Grunsky's inequalities. Furthermore, for $G \in \Sigma_{0}^{\prime}$, Schober [6] obtained sharp bounds for the coefficients $B_{2 n-1}, 1 \leq n \leq 7$.

The object of the present paper is to introduce two new subclasses of the function class $\Sigma_{b}^{\prime}$ and find estimates for the initial coefficients $b_{0}, b_{1}$ and $b_{2}$ for functions in these new subclasses.

We need the following lemma for our further investigation.
Lemma 1.1 ([4]). If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k$, where $\mathcal{P}$ is the family of all functions $h$ analytic in $\Delta:=\{z: z \in \mathbb{C}$ and $|z|<1\}$ for which $\Re(h(z))>0$ where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \quad(z \in \Delta) .
$$

## 2. Coefficient bounds for the function class $M_{\Sigma_{b}^{\prime}}(\alpha, \lambda)$

Definition 2.1. A function $f(z) \in \Sigma_{b}^{\prime}$ given by (1.1) is said to be in the class $M_{\Sigma_{b}^{\prime}}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left\{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \lambda \geq 1, z \in \tilde{\Delta}) \tag{2.1}
\end{equation*}
$$

and
$\left|\arg \left\{\lambda \frac{w G^{\prime}(w)}{G(w)}+(1-\lambda)\left(1+\frac{w G^{\prime \prime}(w)}{G^{\prime}(w)}\right)\right\}\right|<\frac{\alpha \pi}{2}(0<\alpha \leq 1, \lambda \geq 1, w \in \tilde{\Delta})$,
where the function $G$ is given by (1.3).
For $\lambda=1$, we denote the class $M_{\Sigma_{b}^{\prime}}(\alpha, \lambda)=M_{\Sigma_{b}^{\prime}}(\alpha)$.
We state and prove our main results.

Theorem 2.2. Let $f \in M_{\Sigma_{b}^{\prime}}(\alpha, \lambda)$. Then

$$
\begin{gather*}
\left|b_{0}\right| \leq \frac{2 \alpha}{\lambda}  \tag{2.3}\\
\left|b_{1}\right| \leq \frac{\alpha}{2 \lambda-1} \sqrt{(\alpha-2)^{2}+\frac{4 \alpha^{2}}{\lambda^{2}}} \tag{2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|b_{2}\right| \leq \frac{2 \alpha}{3(3 \lambda-2)}\left[2\left\{\frac{6 \alpha^{2}-\lambda^{2}\left(\alpha^{2}-3 \alpha+2\right)}{3 \lambda^{2}}\right\}+3-2 \alpha\right] . \tag{2.5}
\end{equation*}
$$

Proof. Since $f \in M_{\Sigma_{b}^{\prime}}(\alpha, \lambda)$, there exist two functions $p$ and $q$ such that

$$
\begin{equation*}
\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=(p(z))^{\alpha} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \frac{w G^{\prime}(w)}{G(w)}+(1-\lambda)\left(1+\frac{w G^{\prime \prime}(w)}{G^{\prime}(w)}\right)=(q(w))^{\alpha} \tag{2.7}
\end{equation*}
$$

respectively, where $p(z)$ and $q(w)$ satisfy the inequalities $\Re(p(z))>0(z \in \tilde{\Delta})$ and $\Re(q(w))>0(w \in \tilde{\Delta})$.

Furthermore, the functions $p(z)$ and $q(w)$ have the forms:

$$
p(z)=1+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\frac{c_{3}}{z^{3}}+\cdots \quad(z \in \tilde{\Delta})
$$

and

$$
q(w)=1+\frac{d_{1}}{w}+\frac{d_{2}}{w^{2}}+\frac{d_{3}}{w^{3}}+\cdots \quad(w \in \tilde{\Delta})
$$

By definition of $f$ and $G$, we have

$$
\begin{align*}
& \lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)  \tag{2.8}\\
= & 1-\frac{\lambda b_{0}}{z}+\frac{\lambda b_{0}^{2}+2(1-2 \lambda) b_{1}}{z^{2}}-\frac{\lambda b_{0}^{3}-3 \lambda b_{0} b_{1}-3(2-3 \lambda) b_{2}}{z^{3}}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
& \lambda \frac{w G^{\prime}(w)}{G(w)}+(1-\lambda)\left(1+\frac{w G^{\prime \prime}(w)}{G^{\prime}(w)}\right)  \tag{2.9}\\
= & 1+\frac{\lambda b_{0}}{w}+\frac{\lambda b_{0}^{2}-2(1-2 \lambda) b_{1}}{w^{2}}+\frac{\lambda b_{0}^{3}-3(2-3 \lambda) b_{2}-6(1-2 \lambda) b_{0} b_{1}}{w^{3}}+\cdots .
\end{align*}
$$

A simple calculation shows

$$
\begin{align*}
(p(z))^{\alpha}= & 1+\frac{\alpha c_{1}}{z}+\frac{\frac{1}{2} \alpha(\alpha-1) c_{1}^{2}+\alpha c_{2}}{z^{2}}  \tag{2.10}\\
& +\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) c_{1}^{3}+\alpha(\alpha-1) c_{1} c_{2}+\alpha c_{3}}{z^{3}}+\cdots
\end{align*}
$$

and

$$
\begin{align*}
(q(w))^{\alpha}= & 1+\frac{\alpha d_{1}}{w}+\frac{\frac{1}{2} \alpha(\alpha-1) d_{1}^{2}+\alpha d_{2}}{w^{2}}  \tag{2.11}\\
& +\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) d_{1}^{3}+\alpha(\alpha-1) d_{1} d_{2}+\alpha d_{3}}{w^{3}}+\cdots
\end{align*}
$$

Using (2.8), (2.10) in (2.6) and (2.9), (2.11) in (2.7), we get

$$
\begin{equation*}
\lambda b_{0}^{2}+2(1-2 \lambda) b_{1}=\frac{1}{2} \alpha(\alpha-1) c_{1}^{2}+\alpha c_{2} \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
-\lambda b_{0}=\alpha c_{1} \tag{2.12}
\end{equation*}
$$

.14) $-\lambda b_{0}^{3}+3 \lambda b_{0} b_{1}+3(2-3 \lambda) b_{2}=\frac{\alpha(\alpha-1)(\alpha-2)}{6} c_{1}^{3}+\alpha(\alpha-1) c_{1} c_{2}+\alpha c_{3}$,

$$
\begin{align*}
\lambda b_{0} & =\alpha d_{1},  \tag{2.15}\\
\lambda b_{0}^{2}-2(1-2 \lambda) b_{1} & =\frac{1}{2} \alpha(\alpha-1) d_{1}^{2}+\alpha d_{2}
\end{align*}
$$

and
$\lambda b_{0}^{3}-6(1-2 \lambda) b_{0} b_{1}-3(2-3 \lambda) b_{2}=\frac{\alpha(\alpha-1)(\alpha-2)}{6} d_{1}^{3}+\alpha(\alpha-1) d_{1} d_{2}+\alpha d_{3}$.
From (2.12) and (2.15), it follows that

$$
\begin{equation*}
b_{0}=-\frac{\alpha c_{1}}{\lambda}=\frac{\alpha d_{1}}{\lambda} \quad\left(c_{1}=-d_{1}\right) \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{0}^{2}=\frac{\alpha^{2}}{2 \lambda^{2}}\left(c_{1}^{2}+d_{1}^{2}\right) \tag{2.19}
\end{equation*}
$$

As $\Re(p(z))>0$ in $\tilde{\Delta}$, the function $p\left(\frac{1}{z}\right) \in \mathcal{P}$. Similarly $q\left(\frac{1}{w}\right) \in \mathcal{P}$. So, the coefficients of $p(z)$ and $q(w)$ satisfy the inequality of Lemma 1.1. Applications of triangle inequality and followed by Lemma 1.1 in (2.19) give us the required estimates on $b_{0}$ as asserted in (2.3). Also, the estimates on $b_{0}$ follows from the direct consequence of (2.12).

By squaring and adding (2.13) and (2.16), using (2.19) in the computation leads to

$$
\begin{aligned}
b_{1}^{2}=\frac{\alpha^{2}}{8(2 \lambda-1)^{2}}[ & \frac{(\alpha-1)^{2}}{4}\left(c_{1}^{4}+d_{1}^{4}\right)+\left(c_{2}^{2}+d_{2}^{2}\right)+(\alpha-1)\left(c_{1}^{2} c_{2}+d_{1}^{2} d_{2}\right) \\
& \left.-\frac{\alpha^{2}}{2 \lambda^{2}}\left(c_{1}^{4}+d_{1}^{4}+2 c_{1}^{2} d_{1}^{2}\right)\right]
\end{aligned}
$$

which in turn yields the estimates on $b_{1}$ given in (2.4).

Finally, to determine the bounds on $b_{2}$, consider the sum of (2.14) and (2.17) with $c_{1}=-d_{1}$, we have

$$
\begin{equation*}
b_{0} b_{1}=\frac{1}{3(5 \lambda-2)}\left[\alpha(\alpha-1) c_{1}\left(c_{2}-d_{2}\right)+\alpha\left(c_{3}+d_{3}\right)\right] \tag{2.20}
\end{equation*}
$$

Subtracting (2.17) from (2.14) with $c_{1}=-d_{1}$, we obtain

$$
\begin{align*}
-6(3 \lambda-2) b_{2}= & 2 \lambda b_{0}^{3}+3(3 \lambda-2) b_{0} b_{1}+\frac{\alpha(\alpha-1)(\alpha-2)}{3} c_{1}^{3}  \tag{2.21}\\
& +\alpha(\alpha-1) c_{1}\left(c_{2}+d_{2}\right)+\alpha\left(c_{3}-d_{3}\right) .
\end{align*}
$$

Using (2.18) and (2.20) in (2.21) gives

$$
\begin{aligned}
\frac{6(3 \lambda-2)}{\alpha} b_{2}= & \frac{6 \alpha^{2}-\lambda^{2}\left(\alpha^{2}-3 \alpha+2\right)}{3 \lambda^{2}} c_{1}^{3}+\frac{4(1-\alpha)(2 \lambda-1)}{5 \lambda-2} c_{1} c_{2} \\
& +\frac{2 \lambda(1-\alpha)}{5 \lambda-2} c_{1} d_{2}-\frac{4(2 \lambda-1)}{5 \lambda-2} c_{3}+\frac{2 \lambda}{5 \lambda-2} d_{3}
\end{aligned}
$$

Finally, an application of Lemma 1.1 for the above equation immediately yields the desired estimates on $b_{2}$ given by (2.5). The proof of Theorem 2.2 is thus completed.

Taking $\lambda=1$ in Theorem 2.2, we get the following results.
Corollary 2.3. Let $f \in M_{\Sigma_{b}^{\prime}}(\alpha)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq 2 \alpha, \\
\left|b_{1}\right| \leq \alpha \sqrt{5 \alpha^{2}-4 \alpha+4}
\end{gathered}
$$

and

$$
\left|b_{2}\right| \leq \frac{10 \alpha}{9}\left(2 \alpha^{2}+1\right)
$$

3. Coefficient bounds for the function class $\mathcal{T}_{\Sigma_{b}^{\prime}}(\beta, \lambda)$

Definition 3.1. A function $f(z) \in \Sigma_{b}^{\prime}$ given by (1.1) is said to be in the class $\mathcal{T}_{\Sigma_{b}^{\prime}}(\beta, \lambda)$ if the following conditions are satisfied:
(3.1) $\Re\left\{\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\beta \quad(0 \leq \beta<1, \lambda \geq 1, z \in \tilde{\Delta})$
and

$$
\begin{equation*}
\Re\left\{\lambda \frac{w G^{\prime}(w)}{G(w)}+(1-\lambda)\left(1+\frac{w G^{\prime \prime}(w)}{G^{\prime}(w)}\right)\right\}>\beta \quad(0 \leq \beta<1, \lambda \geq 1, w \in \tilde{\Delta}) \tag{3.2}
\end{equation*}
$$

where the function $G$ is the inverse of $f$ given by (1.3).
For $\lambda=1$, we use the notation:

$$
\mathcal{T}_{\Sigma_{b}^{\prime}}(\beta, \lambda)=\mathcal{T}_{\Sigma_{b}^{\prime}}(\beta) .
$$

Theorem 3.2. Let $f(z)$ given by (1.1) be in the class $\mathcal{T}_{\Sigma_{b}^{\prime}}(\beta, \lambda)$. Then

$$
\begin{gather*}
\left|b_{0}\right| \leq \frac{2(1-\beta)}{\lambda}  \tag{3.3}\\
\left|b_{1}\right| \leq \frac{(1-\beta)}{2 \lambda-1} \sqrt{1+\frac{4(1-\beta)^{2}}{\lambda^{2}}} \tag{3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|b_{2}\right| \leq \frac{2(1-\beta)}{3(3 \lambda-2)}\left[1+\frac{4(1-\beta)^{2}}{\lambda^{2}}\right] \tag{3.5}
\end{equation*}
$$

Proof. Let $f \in \mathcal{T}_{\Sigma_{b}^{\prime}}(\beta, \lambda)$. Then, by definition of the class $\mathcal{T}_{\Sigma_{b}^{\prime}}(\beta, \lambda)$,

$$
\begin{equation*}
\lambda \frac{z f^{\prime}(z)}{f(z)}+(1-\lambda)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\beta+(1-\beta) p(z) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \frac{w G^{\prime}(w)}{G(w)}+(1-\lambda)\left(1+\frac{w G^{\prime \prime}(w)}{G^{\prime}(w)}\right)=\beta+(1-\beta) q(w) \tag{3.7}
\end{equation*}
$$

where $p$ and $q$ are as in Theorem 2.2.
Equating coefficients in (3.6) and (3.7) yield

$$
\begin{gather*}
-\lambda b_{0}=(1-\beta) c_{1}  \tag{3.8}\\
\lambda b_{0}^{2}+2(1-2 \lambda) b_{1}=(1-\beta) c_{2}  \tag{3.9}\\
-\lambda b_{0}^{3}+3 \lambda b_{0} b_{1}+3(2-3 \lambda) b_{2}=(1-\beta) c_{3} \tag{3.10}
\end{gather*}
$$

and

$$
\begin{gather*}
\lambda b_{0}=(1-\beta) d_{1}  \tag{3.11}\\
\lambda b_{0}^{2}-2(1-2 \lambda) b_{1}=(1-\beta) d_{2}  \tag{3.12}\\
\lambda b_{0}^{3}-3(2-3 \lambda) b_{2}-6(1-2 \lambda) b_{0} b_{1}=(1-\beta) d_{3} \tag{3.13}
\end{gather*}
$$

From (3.8) and (3.11), we get

$$
c_{1}=-d_{1}
$$

and

$$
\begin{equation*}
b_{0}^{2}=\frac{(1-\beta)^{2}}{2 \lambda^{2}}\left(c_{1}^{2}+d_{1}^{2}\right) \tag{3.14}
\end{equation*}
$$

An application of triangle inequality and Lemma 1.1 in (3.14) give the desired estimate on $b_{0}$ as asserted in (3.3). The estimate on $b_{0}$ also follows from the direct consequence of (3.8).

Next, to determine bound on $b_{1}$, squaring and adding (3.9) and (3.12), we obtain

$$
\begin{equation*}
8(1-2 \lambda)^{2} b_{1}^{2}+2 \lambda^{2} b_{0}^{4}=(1-\beta)^{2}\left(c_{2}^{2}+d_{2}^{2}\right) \tag{3.15}
\end{equation*}
$$

Using (3.14) in (3.15) gives

$$
b_{1}^{2}=\frac{1}{8(1-2 \lambda)^{2}}\left[(1-\beta)^{2}\left(c_{2}^{2}+d_{2}^{2}\right)-\frac{(1-\beta)^{4}}{2 \lambda^{2}\left(c_{1}^{4}+d_{1}^{4}+2 c_{1}^{2} d_{1}^{2}\right)}\right] .
$$

An application of Lemma 1.1 in the above equation, yields the required estimate on $b_{1}$ as asserted in (3.4).

Finally, in order to obtain the bound on $b_{2}$, adding (3.10) and (3.13) yields

$$
\begin{equation*}
b_{0} b_{1}=\frac{(1-\beta)}{3(5 \lambda-2)}\left(c_{3}+d_{3}\right) \tag{3.16}
\end{equation*}
$$

Subtracting (3.13) from (3.10), we obtain

$$
\begin{equation*}
-6(3 \lambda-2) b_{2}=2 \lambda b_{0}^{3}+3(3 \lambda-2) b_{0} b_{1}+(1-\beta)\left(c_{3}-d_{3}\right) \tag{3.17}
\end{equation*}
$$

Using (3.8) and (3.16) in (3.17) lead to

$$
\begin{equation*}
b_{2}=\frac{(1-\beta)}{3(3 \lambda-2)}\left[\frac{(1-\beta)^{2}}{\lambda^{2}} c_{1}^{3}-\frac{2(2 \lambda-1}{5 \lambda-2} c_{3}+\frac{\lambda}{5 \lambda-2} d_{3}\right], \tag{3.18}
\end{equation*}
$$

which eventually leads to the desired estimates (3.5) on $b_{2}$. The proof of Theorem 3.2 is thus completed.

Taking $\lambda=1$ in Theorem 3.2, we the get the following result.
Corollary 3.3. Let the function $f(z)$ given by (1.1) be in the class $\mathcal{T}_{\Sigma_{b}^{\prime}}(\beta)$. Then

$$
\begin{gathered}
\left|b_{0}\right| \leq 2(1-\beta) \\
\left|b_{1}\right| \leq(1-\beta) \sqrt{4 \beta^{2}-4 \beta+5}
\end{gathered}
$$

and

$$
\left|b_{3}\right| \leq \frac{2(1-\beta)}{3}\left(4 \beta^{2}-4 \beta+5\right)
$$

Remark 3.4. From the above discussion it is cleared that the estimates of $b_{0}, b_{1}$ and $b_{2}$ in Theorem 2.2 when $\alpha=1$ is the same as the corresponding estimates in Theorem 3.2 when $\beta=0$.

## References

[1] P. L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28 (1971), 169-172.
[2] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569-1973.
[3] Y. Kubota, Coefficients of meromorphic univalent functions, Kōdai Math. Sem. Rep. 28 (1977), no. 2-3, 253-261.
[4] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[5] M. Schiffer, Sur un problème d́ extrémum de la représentation conforme, Bull. Soc. Math. France 66 (1938), 48-55.
[6] G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67(1977), no. 1, 111-116.
[7] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421-450.
[8] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192.
[9] Q.-H. Xu, Y.-C. Gui, and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994.

Department of Mathematics
School of Applied Sciences
Kiit University
Bhubaneswar, 751024, Odisha, India
E-mail address: trailokyap6@gmail.com

