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SOME PROPERTIES OF EVOLUTION ALGEBRAS

L. M. Camacho, J. R. Gómez, B. A. Omirov, and R. M. Turdibaev

Abstract. The paper is devoted to the study of finite dimensional com-
plex evolution algebras. The class of evolution algebras isomorphic to
evolution algebras with Jordan form matrices is described. For finite
dimensional complex evolution algebras the criterium of nilpotency is es-
tablished in terms of the properties of corresponding matrices. Moreover,
it is proved that for nilpotent n-dimensional complex evolution algebras
the possible maximal nilpotency index is 1 + 2n−1

.

1. Introduction

In 20s and 30s of the last century a new object was introduced to math-
ematics, which was the product of interactions between Mendelian genetics
and mathematics. Mendel established the basic laws for inheritance, which are
summarized as Mendel’s Law of Segregation and Mendel’s Law of Independent
Assortment. This laws were mathematically formulated by Serebrowsky [10],
who was also the first to give an algebraic interpretation of the “ × ” sign,
which indicated sexual reproduction. Later Glivenkov [6] used the notion of
Mendelian algebras in his work. Also Kostitzin [7] independently introduced
a “symbolic multiplication” to express Mendel’s laws. In his several papers
Etherington [3]-[5] introduced the formal language of abstract algebra to the
study of genetics. These algebras, in general, are non-associative.

However, in the beginning of the XX century in genetics there were discov-
ered several examples of inheritances, where traits do not segregate in accor-
dance with Mendel’s laws. In the present day, non-Mendelian genetics is a basic
language of molecular genetics. Non-Mendelian inheritance plays an important
role in several disease processes. Naturally, the question arises: What non-
Mendelian genetics offers to mathematics? The evolution algebras, introduced
in [12] serve as the answer to this question.

The concept of evolution algebras lies between algebras and dynamical sys-
tems. Algebraically, evolution algebras are non-associative Banach algebra;
dynamically, they represent discrete dynamical systems. Evolution algebras
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have many connections with various branches of mathematics, such as graph
theory, group theory, stochastic processes, mathematical physics etc. Since
evolution algebras are not defined by identities, they can not belong to any
well-known classes of non-associative algebras, as Lie, alternative and Jordan
algebras. In recent years several authors have tried to investigate the evolution
algebras (see [1], [2], [12]).

The foundation of evolution algebra theory and applications in non-Mendel-
ian genetics and Markov chains are developed, with pointers to some further
research topics in book [11].

In genetic, the action of genes is manifested statistically in sufficiently large
communities of matching individuals (belonging to the same species). These
communities are called populations [8]. The population exists not only in space
but also in time, i.e., it has its own life cycle. The basis for this phenomenon
is reproduction by mating. Mating in a population can be free or subject to
certain restrictions.

The evolution of a population comprises a determined change of state in
the next generations as a result of reproduction and selection. This evolution
can be studied by using the properties of the evolution algebras. It is possible
to characterize the disappearance of a population by means of the nilpotency
and solvability of the algebra. More precisely, we identify the multiplication
of algebra as the reproduction of the species. Hence the solvability is the
reproduction of the same generations and the nilpotency is the reproduction of
the species but not necessarily of the same generation. Both concepts allow us
to study the disappearance of a population.

In this paper, we study some properties of finite dimensional complex evo-
lution algebras. Since any evolution algebra in a natural basis is defined by a
quadratic matrix, we study the connection between the algebraic structure of
evolution algebras and matrices. More precise results are obtained for evolution
algebras with non-singular matrices. For example, the only automorphisms for
such algebras are the composition of basis permutation and the multiplication
of basic vectors by scalars. Since in the matrix theory the Jordan form of the
matrix is essential topic, we investigate a class of evolution algebras isomorphic
to evolution algebras with Jordan form matrices. Thus we can distinguish the
class of evolution algebras with a matrix in which the eigenvalues are known.
Therefore, corresponding algebras can be investigated by the eigenvalues from
an algebraical point of view. Namely, the problem of reconstruction of Markov
chains on trees [9] which depends on the second eigenvalue can be studied by
above evolution algebras.

In [5] it was pointed out for general genetic algebras that the nilpotent
property is essential to these algebras and the definition as train algebras and
baric algebras were formulated. By this means, we define nil, solvable, right-
nilpotent and nilpotent evolution algebras as in [1] and study some properties of
n-dimensional nilpotent evolution algebras. The notions as right nilpotency and
nility for finite dimensional evolution algebras are equivalent [1]. In this work,
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we prove that any n-dimensional right-nilpotent evolution algebra is nilpotent.
Moreover, for evolution algebras of dimension n we describe some possible
values for indexes of nilpotency and prove that 1+2n−1 is a maximal nilpotency
index.

2. Preliminaries

Now we define the main object of the paper.

Definition 2.1 ([11]). Let E be a vector space over a field K with defined
multiplication · and a basis {e1, e2, . . . } such that

ei · ej = 0, i 6= j,

ei · ei =
∑

k

aikek, i ≥ 1,

then E is called an evolution algebra and basis {e1, e2, . . . } is said to be natural
basis.

From the above definition it follows that evolution algebras are commutative.
Let E be a finite dimensional evolution algebra with natural basis {e1, . . .,

en}, then

ei · ei =

n∑

j=1

aijej, 1 ≤ i ≤ n,

where remaining products are equal to zero.
The matrix A = (aij) with 1 ≤ i, j ≤ n is called matrix of the algebra E in

natural basis {e1, . . . , en}.
In [11] conditions for basis transformations that preserve naturalness of the

basis are given. Also, the relation between the matrices in a new and old natural
basis is established in terms of new defined operation on matrices. Since this
approach is not practical for our further purposes, below we give the following
brief version in terms of its matrix elements.

Now let us consider non-singular linear transformation of the given natural
basis {e1, . . . , en} by matrix T = (tij) with 1 ≤ i, j ≤ n :

fi =
n∑

j=1

tijej, 1 ≤ i ≤ n.

This transformation is an isomorphism if and only if fi · fj = 0 for all i 6= j.

Thus,

fi · fj =

n∑

p=1

tiptjp(ep · ep) =

n∑

k=1

(
n∑

p=1

tiptjpapk

)

ek = 0.

Hence, if T is an isomorphism, then for i 6= j and 1 ≤ k ≤ n we have

(2.1)
n∑

p=1

tiptjpapk = 0.
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Observe that

fi · fi =

n∑

p=1

t2ip(ep · ep) =

n∑

p=1

t2ip

n∑

k=1

apkek =

n∑

k=1

(
n∑

p=1

t2ipapk

)

ek.

Now let Tij be the elements of matrix T−1. Then ek =

n∑

s=1

Tksfs and

fi · fi =

n∑

k=1

(
n∑

p=1

t2ipapk

)
n∑

s=1

Tksfs =

n∑

s=1

(
n∑

k=1

n∑

p=1

t2ipapkTks

)

fs.

Hence, for the elements of the matrix B = (bis) with 1 ≤ i, s ≤ n of the
evolution algebra E in natural basis {f1, . . . , fn} we have

(2.2) bis =
n∑

k=1

n∑

p=1

t2ipapkTks.

Definition 2.2. An element a of the evolution algebra E is called nil if there
exists n(a) ∈ N such that (. . . ((a · a) · a) · . . . ) · a)

︸ ︷︷ ︸

n(a) times

= 0. The evolution algebra

E is called nil if any element of the algebra is nil.

We introduce the following sequences:

E(1) = E, E(k+1) = E(k)E(k), k ≥ 1,

E〈1〉 = E, E〈k+1〉 = E〈k〉E, k ≥ 1,

E1 = E, Ek =

k−1∑

i=1

EiEk−i, k ≥ 1.

Note that is not difficult to prove the following inclusions for k ≥ 1 :

E〈k〉 ⊆ Ek, E(k+1) ⊆ E2k .

Also, note that since E is a commutative algebra we obtain

Ek =
∑

1≤i≤ k
2

EiEk−i.

Definition 2.3. An evolution algebra E is called
(i) solvable if there exists n ∈ N such that E(n) = 0;
(ii) right nilpotent if there exists n ∈ N such that E〈n〉 = 0;
(iii) nilpotent if there exists n ∈ N such that En = 0.

The minimal numbers s, r, n such that E(s), E〈r〉, En are equal to zero are
called indexes of solvability, right nilpotency and nilpotency, respectively.

Observe that if an evolution algebra is nilpotent, then it is right nilpotent
and solvable. The following example shows that a solvable evolution algebra is
not necessarily a right nilpotent algebra.
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Proposition 2.4. Let E be an n-dimensional complex evolution algebra such

that dimE(2) = 1. Then E(3) = 0 if and only if E is isomorphic to an evolution

algebra with natural basis {e1, . . . , en} and k ∈ {1, . . . , n}, with the following

multiplication:

eiei = λi(e1 + · · ·+ ek), 1 ≤ i ≤ n,

where λi ∈ C,
∑k

j=1 λj = 0,
∑n

j=1 |λj | 6= 0.

Proof. Since dimE(2) = 1 and E(2) is spanned by eiei, 1 ≤ i ≤ n we obtain
that they are collinear to a non-zero vector x = a1e1 + · · · + anen. Let us
suppose that there exist k elements, {ai1 , . . . , aik}, with 1 ≤ k ≤ n such that
all of them are non-zeros. With the suitable natural basis change, one can
assume that x = e1 + · · ·+ ek for some 1 ≤ k ≤ n.

Let eiei = λix, 1 ≤ i ≤ n and
∑n

j=1 |λj | 6= 0. Then E(3) is spanned by

xx = (e1 + · · ·+ ek)
2 =

k∑

j=1

λjx.

Hence, E(3) = 0 if and only if
∑k

j=1 λj = 0. �

The following example is a special case of the above proposition:

Example 2.5. Let E be an evolution algebra with natural basis {e1, . . . , en}
and the following multiplication:

eiei = e1 + · · ·+ en, 1 ≤ i ≤ n− 1,

enen = (1− n)(e1 + · · ·+ en).

Then E(3) = 0, but Ek = 〈e1 + · · ·+ en〉 for k ≥ 2.

Remark 2.6. Actually, the multiplication obtained in Proposition 2.4 can be
divided into two disjoint classes. First one, when λi = 0 for all 1 ≤ i ≤ k,

then this evolution algebra is nilpotent. The second one is when λi 6= 0 for
some 1 ≤ i ≤ k. Then by natural basis transformation one can assume that
e1e1 = e1 + · · ·+ ek and hence, this evolution algebra is not nilpotent.

In [1] the equivalence of right nilpotency and nility for finite dimensional
evolution algebras is proved.

Theorem 2.7 ([1]). The following statements are equivalent:
a) The matrix of an evolution algebra E can be transformed by natural basis

permutation to

(2.3) A =










0 a12 a13 . . . a1n
0 0 a23 . . . a2n
0 0 0 . . . a3n
...

...
...

. . .
...

0 0 0 . . . 0










;
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b) Evolution algebra E is right nilpotent algebra;
c) Evolution algebra E is nil algebra.

3. Isomorphisms

In case of evolution algebras with non-singular evolution matrices the prob-
lem of finding isomorphic algebras to the given one can be solved more precisely.

Let E be an evolution algebra with matrix A such that detA 6= 0.

Proposition 3.1. If we define Tπ = (tij), 1 ≤ i, j ≤ n, such that tij 6= 0 if

and only if j = π(i) with π ∈ Sn, then Aut(E) = {T : T is of the form Tπ for

some π ∈ Sn}. Moreover, if Tπ is an automorphism of evolution algebra E and

B = (bij) with 1 ≤ i, j ≤ n is the matrix of E in basis Tπ(e1), . . . , Tπ(en), then

(3.1) bij =
t2
i,π(i)

tj,π(j)
· aπ(i)π(j).

Proof. Let T be an automorphism and (tij)1≤i,j≤n the matrix. Consider (2.1)
as a linear homogeneous system of equations in terms of unknowns ti1tj1, . . . ,
tintjn. If A is a non-singular matrix, then from (2.1) we obtain







ti1tj1 = 0
ti2tj2 = 0

. . .

tintjn = 0

where i 6= j.

Since matrix T = (tij) with 1 ≤ i, j ≤ n is non-singular, in every row there
is at least one non-zero element. But for any non-zero element tip (in the i-th
row) we have tiptjp = 0 for all j 6= i. Therefore, tjp = 0 for j 6= i. Now if for
some m 6= p we have tim 6= 0, then similarly, we obtain tjm for all j 6= m. But
this contradicts non-singularity of matrix T. Therefore, in every row and every
column we have exactly one non-zero element, i.e., the matrix T has the form
described in the statement of the proposition.

Note that detT = (−1)σ(π)t1π(1)t2π(2) · · · tnπ(n), where σ(π) is the sign of π.
We obtain that the group of automorphisms of E is {Tπ |π ∈ Sn} and

Tπ ◦ Tτ = Tτ◦π.

Let us fix one π ∈ Sn. Then T (ei) = ti,π(i)eπ(i) for all 1 ≤ i ≤ n. Now

T (ei) · T (ei) = t2i,π(i)(eπ(i) · eπ(i)) = t2i,π(i)

n∑

k=1

aπ(i)kek

= t2i,π(i)

n∑

k=1

aπ(i)π(k)eπ(k) =

n∑

k=1

t2i,π(i)

tk,π(k)
aπ(i)π(k)T (ek).

Hence, the elements of evolution matrix B = (bij)1≤i,j≤n of an algebra
isomorphic to E satisfy (3.1). �
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For a π ∈ Sn denote by sπ : {1, 2, . . . , n} \ {π−1(n)} → {1, 2, . . . , n} a
one-to-one mapping defined by sπ(i) = π−1(1 + π(i)).

Proposition 3.2. Let A = (aij)1≤i,j≤n be a matrix of an evolution algebra

isomorphic to an evolution algebra with Jordan cell matrix with non-zero eigen-

value λ. Then the only non-zero elements of A are the diagonal elements and

ai,sπ(i) for all i 6= π−1(n) and λ =
a2
ii

ai,sπ(i)asπ(i)sπ(i)
for all i 6= π−1(n).

Proof. First consider the isomorphism of evolution algebra with Jordan cell
matrix with non-zero eigenvalue λ. Since the matrix is non-singular, by the
proof of Proposition 3.1 we obtain that it is in the form Tπ.

For fixed π ∈ Sn we put Tπ(ei) = fi and derive

fi · fi =







ti,π(i)λfi +
t2i,π(i)

tsπ(i),π(sπ (i))
fsπ(i) for i 6= π−1(n)

ti,π(i)λfi for i = π−1(n).

Hence the matrix of the new evolution algebra is a sum of non-singular
diagonal matrix and a matrix that has exactly one non-zero element on each
row except the π−1(n)-th, which is a zero row and at most one non-zero element
in each column.

Now let us fix a permutation π ∈ Sn and consider matrix A = (aij)
n
i,j=1 with

zero elements except the diagonal elements and ai,sπ(i) for all i 6= π−1(n) and

sπ(i) = π−1(1 + π(i)). If this evolution algebra is isomorphic to an evolution
algebra with Jordan cell matrix with eigenvalue λ, then aii = λti,π(i) for all

1 ≤ i ≤ n and ai,sπ(i) =
t2i,π(i)

tsπ(i),π(sπ (i))
.

Since ti,π(i) =
1
λ
aii and tsπ(i),π(sπ(i)) =

1
λ
asπ(i)sπ(i) we obtain

ai,sπ(i) =
a2ii
λ2

·
λ

asπ(i)sπ(i)
=

1

λ
·

a2ii
asπ(i)sπ(i)

and hence λ =
a2ii

ai,sπ(i)asπ(i)sπ(i)
.

Hence, if matrix A satisfies λ =
a2
ii

ai,sπ(i)asπ(i)sπ(i)
for all i 6= π−1(n), then

evolution algebra with matrix A is isomorphic to evolution algebra with Jordan
cell matrix with eigenvalue λ. This isomorphism has the matrix which is the
inverse to T = (tij)

n
i,j=1, where tiπ(i) =

1
λ
aii and zero otherwise. �

The above result can be generalized to the case of Jordan form matrices.
Let J = J1 ⊕ J2 ⊕ · · · ⊕ Jr, where Ji are Jordan cells of dimension ni with
non-zero eigenvalue λi.

Now let us denote µk = λi for n1+· · ·+ni−1+1 ≤ k ≤ n1+· · ·+ni, 1 ≤ i ≤ r.

Take π ∈ Sn and denote s′π : {1, . . . , n}\{π−1(n1), . . . , π
−1(nr)}→{1, . . . , n}

a one-to-one mapping defined by s′π(i) = π−1(1 + π(i)).

Corollary 3.3. Let A = (aij)1≤i,j≤n be a matrix of an evolution algebra iso-

morphic to an evolution algebra with Jordan form matrix J. Then the only
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non-zero elements of A are the diagonal elements and ai,s′π(i) such that

a2ii
ai,s′π(i)as′π(i)s′π(i)

=
µ2
i

µs′π(i)

for i 6∈ {π−1(n1), . . . , π
−1(nr)}.

4. Nilpotency of evolution algebras

Let us now consider an evolution algebra E with Jordan cell with eigenvalue
λ.

Proposition 4.1. If λ 6= 0, then E is neither solvable nor right nilpotent and

therefore is not nilpotent.

Proof. Since λ 6= 0 then evolution matrix is non-degenerated. Therefore, E2 =
E(2) = E〈2〉 = E. By simple induction we obtain Ek = E(k) = E〈k〉 = E and
the statement of the proposition is verified. �

Proposition 4.2. For an evolution algebra with Jordan cell matrix and eigen-

value λ = 0 the following statements hold:
(i) E is one generated;
(ii) E is solvable with index of solvability n+ 1;
(iii) E is right nilpotent with index of right nilpotency n+ 1;
(iv) E is nilpotent with index of nilpotency 2n−1 + 1.

Proof. (i) From λ = 0 it follows that for basis elements ei of E we have ei ·ei =
ei+1 for all 1 ≤ i ≤ n− 1 and en · en = 0.

Therefore, E is one-generated: E = id〈e1〉.
(ii) It follows from E(k) = 〈ek, ek+1, . . . , en〉, 1 ≤ k ≤ n and E(n+1) = 0.
(iii) It is similar to (ii).
(iv) We claim that

E2k+1 = E2k+2 = · · · = E2k+1

= 〈ek+2, . . . , en〉

for all 0 ≤ k ≤ n− 2.
Indeed, for k = 0 we have E2 = EE = 〈e2, . . . , en〉.
For k = 1 we have

E2+1 = E3 = EE2 = 〈e3, . . . , en〉,

E22 = E4 = EE3 + E2E2 = 〈e3, . . . , en〉.

Assume that

E2k−1+1 = E2k−1+2 = · · · = E2k = 〈ek+1, . . . , en〉.

Using this assumption we obtain

E2k+1 = EE2k + E2E2k−1 + · · ·+ E2k−1

E2k−1+1

= EE2k + E2E2k + · · ·+ E2k−1

E2k
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= (E + E2 + E3 + · · ·+ E2k−1

)E2k = EE2k = 〈ek+2, . . . , en〉.

Also

E2k+1

= EE2k+1−1 + E2E2k+1−2 + · · ·+ E2kE2k

⊇ E2kE2k = 〈ek+2, . . . , en〉.

So we obtain

〈ek+2, . . . , en〉 = E2k+1 ⊇ E2k+2 ⊇ · · · ⊇ E2k+1

⊇ 〈ek+2, . . . , en〉.

Hence,

E2k+1 = E2k+2 = · · · = E2k+1

= 〈ek+2, . . . , en〉.

Therefore, E2n−1

= 〈en〉 and E2n−1+1 = 0.
Hence, E is nilpotent with nilpotency index equal to 1 + 2n−1. �

Remark 4.3. We should note that the statements (ii)-(iv) of Proposition 4.2
are equivalent, since one can show that each of them is equivalent to λ = 0.
However, statement (i) is not equivalent to λ = 0 since for λ = 1 one can prove
that E is generated by the element e1 + e2.

Observe that any evolution subalgebra of an evolution algebra is an ideal
[11]. Therefore if we consider an evolution algebra EJ with matrix J in Jordan
form J = J1 ⊕ J2 ⊕ · · · ⊕ Jr, where Ji are Jordan cells of dimension ni with
eigenvalues λi, then

EJ = E1 ⊕ E2 ⊕ · · · ⊕ Er,

where Ei = 〈eni−1+1, . . . , eni
〉.

Now we have Ek
J = Ek

1 ⊕Ek
2 ⊕ · · · ⊕Ek

r and therefore EJ is nilpotent if and
only if every Ei is nilpotent. Since we have obtained the criterium of nilpotency
of Jordan blocks, we obtain:

Corollary 4.4. EJ is nilpotent (with index of nilpotency equal to max1≤i≤r{1+
2ni−1}) if and only if J has only zero eigenvalues. The same assertion holds

for right nilpotency and solvability with corresponding indexes equal to 1 +
max1≤i≤r{ni}.

Note that from Corollary 4.4 it follows that for every 1 ≤ k ≤ n we obtain
an example of nilpotent evolution algebra with index of nilpotency equal to
1 + 2k−1.

The following theorem represents the criterium of nilpotency of a finite di-
mensional evolution algebra.

Theorem 4.5. Let E be an n-dimensional evolution algebra. Then E is nilpo-

tent if and only if the matrix of evolution algebra A can be transformed by the

natural basis permutation to form (2.3). Moreover, the index of nilpotency of

the evolution algebra E is not greater than 2n−1 + 1.
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Proof. Let E be a nilpotent. Then it is right nilpotent and therefore, by Theo-
rem 2.7 the matrix of this evolution algebra can be transformed by the natural
basis permutation to form (2.3).

Now let the matrix A of E can be transformed by the natural basis permu-
tation to form (2.3).

Assume that a12a23 · · · an−1n 6= 0. Similar to the proof of (iv) in Proposition
4.2 one can verify

E2k+1 = E2k+2 = · · · = E2k+1

= 〈ek+2, . . . , en〉

for all 0 ≤ k ≤ n− 2.
Therefore, E2n−1

= 〈en〉 and E2n−1+1 = 0.
Hence, E is nilpotent with nilpotency index equal to 1 + 2n−1.

Now assume that a12a23 · · ·an−1n = 0. In this case we claim that

〈ek+2, . . . , en〉 ⊇ E2k+1

for all 0 ≤ k ≤ n− 2.
Indeed, for k = 0 we have E2 = EE ⊆ 〈e2, . . . , en〉.
For k = 1 we have

E2+1 = E3 = EE2 ⊆ 〈e3, . . . , en〉.

Assume that

〈ek+1, . . . , en〉 ⊇ E2k−1+1.

Using this assumption we obtain

E2k+1 = EE2k + E2E2k−1 + · · ·+ E2k−1

E2k−1+1

⊆ EE2k−1+1 + E2E2k−1+1 + · · ·+ E2k−1

E2k−1+1

= (E + E2 + E3 + · · ·+ E2k−1

)E2k−1+1 ⊆ EE2k−1+1 ⊆ 〈ek+2, . . . , en〉.

So we obtain

〈ek+2, . . . , en〉 ⊇ E2k+1.

Therefore, 〈en〉 ⊇ E2n−2+1.

Hence,

E2n−1+1 = EE2n−1

+ E2E2n−1−1 + · · ·+ E2n−2

E2n−2+1

⊆ (E + E2 + · · ·+ E2n−2

)〈en〉 ⊆ E〈en〉 = 0.

Thus, E is nilpotent with nilpotency index not greater than 1 + 2n−1. �

Corollary 4.6. For finite dimensional complex evolution algebra notions as

nil, nilpotent and right nilpotent algebras are equivalent. However, the indexes

of nility, right nilpotency and nilpotency do not coincide in general.

The following proposition excludes significantly many possible values that a
nilpotency indexes of n-dimensional evolution algebras can take.
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Proposition 4.7. Let E be a nilpotent evolution algebra with index of nilpo-

tency not equal to 2n−1 + 1. Then it is not greater than 2n−2 + 1.

Proof. Since E is nilpotent, we assume that the matrix A of E in the natural
basis {e1, . . . , en} is in the form (2.3).

From the proof of Proposition 4.5 it follows that a12a23 . . . an−1n = 0 and

〈ek+2, . . . , en〉 ⊇ E2k+1

for all 0 ≤ k ≤ n− 2.
Assume that E is nilpotent with index of nilpotency greater than 2n−2 + 1

and not equal to 2n−1 + 1.

Then 〈en〉 ⊇ E2n−2+1 and since E2n−2+1 6= 0 we obtain E2n−2+1 = 〈en〉.

Therefore, 〈en−1, en〉 ⊇ E2n−3+1 ⊇ E2n−3+2 ⊇ · · · ⊇ E2n−2

⊇ 〈en〉.

Now if E2n−3+1 = E2n−3+2 = · · · = E2n−2

= 〈en〉, then

E2n−2+1 = EE2n−2

+ E2E2n−2−1 + · · ·+ E2n−3

E2n−3+1

⊆ (E + E2 + · · ·+ E2n−3

)〈en〉 = E〈en〉 = 0

which is a contradiction. Hence, 〈en−1, en〉 = E2n−3+1.

Now assume that 〈en−k, . . . , en〉 = E2n−k−2+1. Then

〈en−k−1, en−k, . . . , en〉 ⊇ E2n−k−3+1 ⊇ E2n−k−3+2

⊇ · · · ⊇ E2n−k−2

⊇ 〈en−k, . . . , en〉.

If E2n−k−3+1 6= 〈en−k−1, en−k, . . . , en〉, then E2n−k−3+1 = E2n−k−3+2 = · · · =

E2n−k−2

= 〈en−k, . . . , en〉 and

E2n−k−2+1 = EE2n−k−2

+ · · ·+ E2n−k−3

E2n−k−3+1

= E〈en−k, en−k, . . . , en〉 ⊆ 〈en−k+1, en−k, . . . , en〉

which contradicts 〈en−k, . . . , en〉 = E2n−k−2+1.

Hence this assumption is true and therefore E2 = 〈e2, . . . , en〉 which is also
a contradiction a12 · · · an−1n = 0. �

The following example shows that there exist evolution algebras with index
of nilpotency greater than 1 + 2k−3 and less than 1 + 2k−2 for all 4 ≤ k ≤ n.

Example 4.8. Let n and k be positive integers such that 4 ≤ k ≤ n. Consider
an evolution algebra Ek with basis {e1, . . . , en} and the following multiplication
table:

e1 · e1 = e2 + e3 + · · ·+ ek,

e2 · e2 = −e4,

ei · ei = ei+1, 3 ≤ i ≤ k − 1.

Then one can show that E3·2i

k = 〈e4+i, . . . , ek〉 for 0 ≤ i ≤ k − 4 and index of
nilpotency of this algebra is 1 + 3 · 2k−4.
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Now we will consider a nilpotent evolution algebra with matrix (2.3) and a
condition dimE2 = n − 2. Then rankA = n − 2. This implies that there are
1 ≤ i ≤ n − 1 and 2 ≤ j ≤ n such that i-th row is linear dependent to other
rows and j-th column is linear dependent to other columns.

The following proposition presents a relation between the dimension of E2

and E3. In genetics, this property gives information on behavior of population
of species from second and third generations.

Proposition 4.9. Let dimE2 = n − 2 and i-th row (1 ≤ i ≤ n − 1) is linear

dependent to other rows and j-th column (2 ≤ j ≤ n) is linear dependent to

other columns. Then

dimE3 =







n− 3 if i = 1 or

j = n or

j 6= n and j-th column is non-zero or

i 6= 1, j 6= n, j = n− 1 or j = n− 2 and

j-th column is zero

i 6= 1, j 6= n, j ≤ n− 3, i = j + 1, and

j-th column is zero

n− 4 if i 6= 1, j 6= n, i 6= j + 1 and j-th column is zero.

Moreover, i = 1 implies j = 2 and j = n implies i = n− 1.

Proof. Consider

E3 = E ·E2 =

〈
e2(e1e1), e3(e1e1), . . . en−1(e1e1),

e3(e2e2), . . . en−1(e2e2),
. . .

...
en−1(en−2en−2)

〉

=

〈
a12(e2e2), a13(e3e3), . . . a1n−1(en−1en−1),

a23(e3e3), . . . a2n−1(en−1en−1),
. . .

...
an−2n−1(en−1en−1)

〉

.(4.1)

Denote by L := 〈e2e2, e3e3, . . . , en−1en−1〉. Obviously, E3 ⊆ L.

If i = 1, then we obtain a12 = 0 and a23 . . . an−1n 6= 0. Hence, E2 =
〈e3, . . . , en〉 and E3 = 〈e4, . . . , en〉. Moreover, applying the same arguments as
in the proof of Proposition 4.2(i) we obtain

E2k−1+1 = E2k+2 = · · · = E2k = 〈ek+2, . . . , en〉

for all 1 ≤ k ≤ n − 2 and index of nilpotency for this algebra in this case is
1 + 2n−2.

Now let 2 ≤ i ≤ n− 1. Then dimL = n− 3.
If j = n, then an−1n = 0 and therefore, i = n − 1. Hence, from (4.1) one

obtains E3 = 〈e2e2, e3e3, . . . , en−2en−2〉. Thus, dimE3 = n− 3.
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Now if j 6= n and j-th column is non-zero column, then one can easily see
from (4.1) that again E3 = L. Hence, dimE3 = n− 3.

If j 6= n and j-th column is zero column, then

E3 = 〈(e2e2), . . . , (ejej), (ej+2ej+2), . . . , (en−1en−1)〉.

If j = n− 1 or j = n− 2, then dimE3 = n− 3.
Let j ≤ n−3. If i = j+1, then E3 = L. In this case dimE3 = dimL = n−3.
If i 6= j + 1, then dimE3 = dimL− 1.
Hence, the statement of the proposition is verified. �
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