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ON SOME NEW THEOREMS ON MULTIPLIERS

IN HARMONIC FUNCTION SPACES

IN HIGHER DIMENSION II

Miloš Arsenović and Romi F. Shamoyan

Abstract. We present various new sharp assertions on multipliers in
mixed norm, weighted Hardy and new Lizorkin-Triebel spaces of har-
monic functions in higher dimension. Some results are new even in oned-
imensional case.

1. Introduction and preliminaries

In this paper we continue investigation, started in [3], of spaces of multipli-
ers between certain spaces of harmonic functions on the unit ball. While the
subject of multipliers between spaces of analytic functions in the unit disc is a
vast one, multipliers between spaces of analytic functions in the unit ball and
in the unit polydisc in Cn are less explored, for some results in this direction
see [10] and references therein. For results on multipliers between harmonic
spaces on the unit disc we refer the reader to [13], where multipliers between
harmonic Bergman type classes were considered, and to [9] and [8] for the case
of harmonic Hardy classes.

Let us briefly describe the content of the paper. In this section we describe
spaces of harmonic functions on the unit ball that are of interest to us and recall
definition of multipliers between two such spaces. The next section contains
auxiliary results, however some embedding results presented there could be of
independent interest. The last section begins with general necessary conditions
for a sequence to be a multiplier, these are valid for quite general assumptions
on the parameters involved in the definition of the spaces. In many cases these
necessary conditions turn out to be sufficient as well and these characterizations
of multipliers between various spaces of harmonic functions are the main results
of this paper.
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Let B be the open unit ball in Rn, S = ∂B is the unit sphere in Rn, for x ∈ Rn

we have x = rx′, where r = |x| =
√

∑n
j=1 x

2
j and x′ ∈ S. Let ωn denote the

volume of the unit ball in Rn. Normalized Lebesgue measure on B is denoted
by dx = dx1 · · · dxn = rn−1drdx′ so that

∫

B
dx = 1. We set I = [0, 1). We

denote the space of all harmonic functions in an open set Ω by h(Ω). The

gradient of f ∈ C1(Ω) is denoted by ∇f , |∇f(x)| =
√

∑n
j=1 |∂f(x)/∂xj |2 is its

Euclidean norm. In this paper letter C designates a positive constant which
can change its value even in the same chain of inequalities.

For 0 < p < ∞, 0 ≤ r < 1 and f ∈ h(B) we set

Mp(f, r) =

(
∫

S

|f(rx′)|pdx′

)1/p

,

with the usual modification to cover the case p = ∞. For 0 < p < ∞, 0 < q ≤
∞, α > 0 and f ∈ h(B) we consider mixed (quasi)-norms ‖f‖p,q,α defined by

(1) ‖f‖p,q,α =

(
∫ 1

0

Mq(f, r)
p(1 − r2)αp−1rn−1dr

)1/p

,

and the corresponding spaces

Bp,q
α (B) = Bp,q

α = {f ∈ h(B) : ‖f‖p,q,α < ∞}.

For details on these spaces we refer to [4], Chapter 7. In particular these spaces
are complete metric spaces and for min(p, q) ≥ 1 they are Banach spaces. These
mixed norm spaces include weighted Bergman spaces Ap

β(B) = Ap
β = Bp,p

β+1

p

where β > −1 and 0 < p < ∞, see [4] for more on these spaces. We set
A∞

β = B∞,∞
β for β > 0. We also consider, for α ≥ 0, weighted Hardy spaces

Hp
α(B) = Hp

α = {f ∈ h(B) : ‖f‖p,α = sup
r<1

Mp(f, r)(1 − r)α < ∞}, 0 < p ≤ ∞.

If α = 0 we write simply Hp for Hp
0 . In view of the above definitions it is

natural to alow p = ∞ in the definition of Bp,q
α by setting B∞,p

α = Hp
α.

We denote by B the harmonic Bloch space, i.e., the space of all functions
f ∈ h(B) with finite norm

‖f‖B = |f(0)|+ sup
x∈B

(1 − |x|2)|∇f(x)|.

This space is a Banach space, its closed subspace consisting of all f ∈ B such
that limx→S(1− |x|2)|∇f(x)| = 0 is called a little Bloch space and denoted by
B0. We refer the reader to [6] for details on B and B0.

Analytic Triebel-Lizorkin spaces were studied by several authors, see for
example [7], [11] and references therein. In this paper we consider harmonic
Triebel-Lizorkin spaces on the unit ball in Rn.
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Definition 1. Let 0 < p, q < ∞ and α > 0. The harmonic Triebel-Lizorkin
space F p,q

α (B) = F p,q
α consists of all functions f ∈ h(B) such that

(2) ‖f‖Fp,q
α

=

(

∫

S

(
∫ 1

0

|f(rx′)|p(1− r)αp−1dr

)q/p

dx′

)1/q

< ∞.

These spaces are complete metric spaces, for min(p, q) ≥ 1 they are Ba-
nach spaces. We prove certain inclusions between F p,q

α and Bp,q
α spaces (see

Propositions 4 and 5).
Next we need certain facts on spherical harmonics, see [14] for a detailed

exposition. Let Y
(k)
j be the spherical harmonics of order k, j ≤ 1 ≤ dk, on S.

Next,

Z
(k)
x′ (y′) =

dk
∑

j=1

Y
(k)
j (x′)Y

(k)
j (y′)

are zonal harmonics of order k. The spherical harmonics Y
(k)
j (k ≥ 0, 1 ≤ j ≤

dk) form an orthonormal basis of L2(S, dx′). Every f ∈ h(B) has an expansion

f(x) = f(rx′) =
∞
∑

k=0

rkbk · Y
k(x′),

where bk = (b1k, . . . , b
dk

k ), Y k = (Y
(k)
1 , . . . , Y

(k)
dk

) and bk · Y k is interpreted in

the scalar product sense: bk · Y k =
∑dk

j=1 b
j
kY

(k)
j . We often write, to stress

dependence on a function f ∈ h(B), bk = bk(f) and bjk = bjk(f), in fact we have

linear functionals bjk, k ≥ 0, 1 ≤ j ≤ dk, on the space h(B).
We denote the Poisson kernel for the unit ball by P (x, y′), it is given by

P (x, y′) = Py′(x) =

∞
∑

k=0

rk
dk
∑

j=1

Y
(k)
j (y′)Y

(k)
j (x′)

=
1

nωn

1− |x|2

|x− y′|n
, x = rx′ ∈ B, y′ ∈ S.

We recall some definitions from [3], these are needed to formulate our main
results.

Definition 2. For a double indexed sequence of complex numbers

c = {cjk : k ≥ 0, 1 ≤ j ≤ dk}

and a harmonic function f(rx′) =
∑∞

k=0 r
k
∑dk

j=1 b
j
k(f)Y

(k)
j (x′) we define

(c ∗ f)(rx′) =
∞
∑

k=0

dk
∑

j=1

rkcjkb
j
k(f)Y

(k)
j (x′), rx′ ∈ B,
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if the series converges in B. Similarly we define convolution of f, g ∈ h(B) by

(f ∗ g)(rx′) =

∞
∑

k=0

dk
∑

j=1

rkbjk(f)b
j
k(g)Y

(k)
j (x′), rx′ ∈ B,

it is easily seen that f ∗ g is defined and harmonic in B.

Definition 3. For t > 0 and a harmonic function f(x) =
∑∞

k=0 r
kbk(f)·Y

k(x′)
on B we define a fractional derivative of order t of f by the following formula:

(Λtf)(x) =

∞
∑

k=0

rk
Γ(k + n/2 + t)

Γ(k + n/2)Γ(t)
bk(f) · Y

k(x′), x = rx′ ∈ B.

Clearly, for f ∈ h(B) and t > 0 the function Λth is also harmonic in B. We
also note that (g ∗ Py′)(rx′) = (g ∗ Px′)(ry′) and Λt(f ∗ g)(x) = (Λtf ∗ g)(x)
for any f, g ∈ h(B), these easy to prove formulae are often used in our proofs
without comment.

Definition 4. Let X and Y be subspaces of h(B). We say that a double
indexed sequence c is a multiplier from X to Y if c ∗ f ∈ Y for every f ∈ X .
The vector space of all multipliers from X to Y is denoted by MH(X,Y ).

Clearly every multiplier c ∈ MH(X,Y ) induces a linear map Mc : X → Y .
If, in addition, X and Y are complete (quasi)-normed spaces such that all

functionals bjk are continuous on both spaces X and Y , then the map Mc :
X → Y is continuous, as is easily seen using the closed graph theorem. This
condition is satisfied by all spaces we considered above.

2. Auxiliary results

In this section we collect results needed for our main results in the next
section. In proving necessary conditions for a double indexed sequence to be a
multiplier one uses test functions, these are provided by the Bergman kernel for
harmonic weighted Bergman spaces Ap

m, m > −1. This kernel is the following
function
(3)

Qm(x, y) = 2

∞
∑

k=0

Γ(m+ 1 + k + n/2)

Γ(m+ 1)Γ(k + n/2)
rkρkZ

(k)
x′ (y′), x = rx′, y = ρy′ ∈ B.

The test functions we are going to use in the next section are harmonic functions
fm,y(x) = Qm(x, y), y ∈ B. We often write fy instead of fm,y.

The following lemma gives an estimate for the kernel Qm (see [4], [5]).

Lemma 1. (a) Let m > −1. Then, for x = rx′, y = ρy′ ∈ B we have

|Qm(x, y)| ≤
C

|ρx− y′|n+m
.
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(b) Let m > n− 1, 0 ≤ r < 1 and y′ ∈ S. Then
∫

S

dx′

|rx′ − y′|m
≤

C

(1− r)m−n+1
.

The following lemma is an often used result from [4].

Lemma 2 ([4]). Let α > −1 and λ > α+ 1. Then
∫ 1

0

(1 − r)α

(1− rρ)λ
dr ≤ C(1 − ρ)α+1−λ, 0 ≤ ρ < 1.

We need some norm estimates of fy.

Lemma 3. Let 0 < t ≤ ∞. Then we have

Mt(fm,y, r) ≤ C(1− r|y|)−n−m+ n−1

t , m > max

(

n− 1

t
− n,−1

)

.

This follows immediately from Lemma 1. As a consequence we obtain, using
Lemma 2, the following proposition.

Proposition 1. Let 0 < p < ∞, 0 < t ≤ ∞. Then, for m > max(α + n−1
t −

n,−1) we have:

‖fm,y‖Bp,t
α

≤ C(1− |y|)α−n−m+n−1

t , y ∈ B.

The missing case p = ∞, i.e., the case of Hardy spaces, is treated in the next
proposition.

Proposition 2. Let 0 < t ≤ ∞, α ≥ 0 and m > max(α− n+ n−1
t ,−1). Then

we have

(4) ‖fm,y‖Ht
α
≤ C(1− |y|)α−n−m+n−1

t , y ∈ B.

The proof of this proposition is similar to the proof of estimate (11) from
[3] and can be left to the reader. The following lemma is a preparation for
analogous estimates of F p,t

α norm of fm,y.

Lemma 4. Let γ > −1, 0 < p < ∞, m > −1 and p(n+m) > γ + 1. Then we

have

(5)

∫ 1

0

|fm,y(rx
′)|p(1 − r)γdr ≤ C|x′ − y|γ+1−p(n+m), y ∈ B, x′ ∈ S.

Proof. Using definitions and Lemma 1 we obtain

M =

∫ 1

0

|fm,y(rx
′)|p(1 − r)γdr ≤ C

∫ 1

0

(1− r)γdr

|x′ − ry|p(n+m)
.

Using elementary geometric inequality |x′−ry| ≥ c(|x′−y|+(1−r)) we obtain,
using Lemma 2,

M ≤ C

∫ 1

0

(1− r)γdr

[|x′ − y|+ (1− r)]p(n+m)
≤ C|x′ − y|γ+1−p(n+m).

�
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Proposition 3. Let 0 < p, t < ∞ and m > max(α + n−1
t − n,−1). Then we

have

(6) ‖fm,y‖Fp,t
α

≤ C(1− |y|)α−n−m+n−1

t , y ∈ B.

Proof. Using the above lemma and Lemma 1 we obtain

‖fm,y‖
t
Fp,t

α
=

∫

S

(
∫ 1

0

|f(rx′)|p(1 − r)αp−1dr

)t/p

dx′

≤ C

∫

S

|x′ − y|t(α−n−m)dx′ ≤ C(1− |y|)t(α−n−m)+n−1.
�

The remaining part of this section is devoted to embedding results, these
are often used in proofs of our main results in the next section.

Lemma 5. If 0 < s ≤ t ≤ ∞, then

(7) Mt(f, r) ≤ C(1− r)(n−1)(1/t−1/s)Ms(f, r), 0 ≤ r < 1, f ∈ h(B).

Proof. We can assume s < t. Let us set b = (n−1)(1s −
1
t ) and let Ib denote the

operator of fractional integration of order b > 0. Now (7) follows immediately
from the following estimates:

Ms(Ibf, r) ≤ C(1− r)−bMs(f, r), 0 ≤ r < 1,(8)

Mt(f, r) ≤ CMs(Ibf, r), 0 ≤ r < 1.(9)

For the first estimate see [4], Chapter 7, for the second, which is a Hardy-
Littlewood theorem for harmonic functions in the unit ball, see [2], page 47. �

If we raise both sides of inequality (7) to the p-th power, multiply by (1 −
r)αp−1 and integrate over I we obtain the following corollary.

Corollary 1. Let 0 < s ≤ t < ∞, 0 < p < ∞ and α > (n− 1)(1s − 1
t ). Then

(10) ‖f‖Bp,t
α

≤ C‖f‖Bp,s
β

, β = α+ (n− 1)(1/t− 1/s), f ∈ h(B),

i.e., Bp,s
β is continuously embedded into Bp,t

α .

The case p = ∞ leads us to weighted Hardy spaces, for 0 < s ≤ t < ∞ the
following result is an immediate consequence of Lemma 5:

(11) ‖f‖Ht
α
≤ C‖f‖Hs

β
, β = α+ (n− 1)(1/t− 1/s), f ∈ h(B).

Let us note another continuous embedding from [4]:

(12) Bp0,s
α →֒ Bp1,s

α , 0 < s ≤ ∞, 0 < p0 ≤ p1 ≤ ∞, α > 0.

Proposition 4. For 0 < t ≤ p < ∞ the space F p,t
α is continuously embedded

into Bp,t
α :

(13) ‖f‖Bp,t
α

≤ C‖f‖Fp,t
α

, α > 0.



ON SOME NEW THEOREMS ON MULTIPLIERS 1457

Proof. For f ∈ Bp,t
α we have, using continuous form of Minkowski’s inequality

‖f‖p
Bp,t

α
≤ C

∫ 1

0

(
∫

S

|f(rx′)|tdx′

)p/t

(1− r)αp−1dr

= C

∥

∥

∥

∥

(1− r)αt
∫

S

|f(rx′)|tdx′

∥

∥

∥

∥

p/t

Lp/t((1−r)−1dr)

≤ C

(
∫

S

∥

∥(1− r)αt|f(rx′)|t
∥

∥

Lp/t((1−r)−1dr)
dx′

)p/t

= C‖f‖p
Fp,t

α
.

�

Proposition 5. Let 0 < p ≤ 1 and p ≤ q. Then Bp,p
α is continuously embedded

into F q,p
α :

‖f‖F q,p
α

≤ C‖f‖Bp,p
α

, f ∈ h(B).

Proof. We set In = [1 − 2−n, 1 − 2−n−1), then we have ∪∞
n=0In = I. Set, for

x′ ∈ S, In(x
′) =

∫

In
|f(rx′)|q(1 − r)αq−1dr. Since p/q ≤ 1 we have

‖f‖p
F q,p

α
=

∫

S

(
∫ 1

0

|f(rx′)|q(1− r)αq−1dr

)p/q

dx′

=

∫

S

(

∞
∑

n=0

In(x
′)

)p/q

dx′ ≤

∫

S

∞
∑

n=0

In(x
′)p/qdx′

=

∞
∑

n=0

∫

S

In(x
′)p/qdx′.

Set Mnf(x
′) = supr∈In |f(rx′)| for n ≥ 0 and x′ ∈ S. Then we have (see [2],

page 47)
∫

S

Mp
nf(x

′)dx′ ≤ C2n
∫

In

Mp
p (f, r)dr.

Clearly, In(x
′) ≤ C2−nαqM q

nf(x
′) for x′ ∈ S and therefore we can use the above

estimate to get

‖f‖p
F q,p

α
≤ C

∞
∑

n=0

∫

S

2−npαMp
nf(x

′)dx′ ≤ C

∞
∑

n=0

2−n(pα−1)

∫

In

Mp
p (f, r)dr

≤ C

∞
∑

n=0

∫

In

Mp
p (f, r)(1 − r)αp−1dr

= ‖f‖Bp,p
α

.
�
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3. Multipliers on spaces of harmonic functions

In this section we present our main results: sufficient and/or necessary con-
ditions for a double indexed sequence c to be in MH(X,Y ), for certain (quasi)
normed spacesX and Y of harmonic functions. We associate to such a sequence
c a harmonic function

(14) gc(x) = g(x) =
∑

k≥0

rk
dk
∑

j=1

cjkY
(k)
j (x′), x = rx′ ∈ B,

and express our conditions in terms of fractional derivatives of gc.
The first part of the lemma below appeared, in dimension two, in [8], for the

second part see [3] and [12].

Lemma 6. Let f, g ∈ h(B) have expansions

f(rx′) =

∞
∑

k=0

rk
dk
∑

j=1

cjkY
(k)
j (x′), g(rx′) =

∞
∑

l=0

rl
dk
∑

i=1

bilY
(l)
i (x′).

Then we have

∫

S

(g ∗ Py′)(rx′)f(ρx′)dx′ =

∞
∑

k=0

rkρk
dk
∑

j=1

bjkc
j
kY

(k)
j (y′), y′ ∈ S, 0 ≤ r, ρ < 1.

Moreover, for every m > −1, y′ ∈ S and 0 ≤ r, ρ < 1 we have
∫

S

(g ∗ Py′)(rx′)f(ρx′)dx′

= 2

∫ 1

0

∫

S

Λm+1(g ∗ Py′)(rRx′)f(ρRx′)(1 −R2)mRn−1dx′dR.

We note for future use the following formula, contained in Lemma 6:

(15) (c ∗ f)(r2x′) =

∫

S

(gc ∗ Py′)(rx′)f(ry′)dy′, r ∈ I, x′ ∈ B.

Also, if hy = hm,y = Mcfm,y where m > −1 and y = ρy′ ∈ B, then

hy(x) =
∑

k≥0

rkρk
dk
∑

j=1

Γ(k + n/2 +m+ 1)

Γ(k + n/2)Γ(m+ 1)
cjkY

(k)
j (y′)Y

(k)
j (x′), x = rx′ ∈ B.

This gives the following formula which will be in constant use:

(16) hy(x) = Λm+1(gc ∗ Py′)(ρx) y = ρy′ ∈ B, x ∈ B.

The first part of the following lemma, which gives necessary conditions for c to
be a multiplier, is based on [3].

Lemma 7. Let 0 < p, q, t ≤ ∞, 1 ≤ s ≤ ∞ and m > max(α + n−1
t − n,−1).

Assume a double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} is a multiplier



ON SOME NEW THEOREMS ON MULTIPLIERS 1459

from Bp,t
α to Bq,s

β and g = gc is defined in (14). Then the following condition

is satisfied:
(17)

Ts(g) = sup
0≤ρ<1

sup
y′∈S

(1−ρ)m−α+β+n−n−1

t

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞,

where the case s = ∞ requires usual modification.

Also, let 0 < p, t ≤ ∞, 0 < s ≤ ∞, α > 0, β ≥ 0 and m > max(α + n−1
t −

n,−1). If a double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} is a multiplier

from Bp,t
α to Hs

β, then the above function g satisfies condition (17).

Proof. Let c ∈ MH(Bp,t
α , Bq,s

β ), and assume both p and q are finite, the infinite

cases require only small modifications. We have ‖Mcf‖Bq,s
β

≤ C‖f‖Bp,t
α

for f

in Bp,t
α . Set hy = Mcfy, then we have

(18) ‖hy‖Bq,s
β

≤ C‖fy‖Bp,t
α

.

This estimate and Proposition 1 give

(19) ‖hy‖Bq,s
β

≤ C(1 − |y|)α−m−n+n−1

t , y ∈ B.

Using (16) and monotonicity of Ms(hy, r) we obtain, for y = ρy′ ∈ B:

Ms(Λm+1(g ∗ Py′), ρ2) =

(
∫ 1

ρ

(1− r)βq−1rn−1dr

)−1/q

×

(
∫ 1

ρ

(1− r)βq−1rn−1M q
s (hy, ρ

2)dr

)1/q

≤ C(1 − ρ)−β

(
∫ 1

ρ

(1− r)βq−1rn−1M q
s (hy, r)dr

)1/q

≤ C(1 − ρ)−β‖hy‖Bq,s
β

.(20)

Combining (20) and (19) we obtain

(
∫

S

|Λm+1(g ∗ Px′)(ρ2y′)|sdx′

)1/s

≤ C(1 − ρ)α−β−m−n+n−1

t ,

which is equivalent to (17). The case s = ∞ is treated similarly.
Next we consider c ∈ MH(Bp,t

α , Hs
β), assuming 0 < p ≤ ∞. Set hy = Mcfy =

g ∗ fy. We have, by Proposition 1,

(21) ‖fy‖Bp,t
α

≤ C(1 − |y|)α−m−n+n−1

t , y ∈ B,

and, by continuity of Mc, ‖hy‖Hs
β
≤ C‖fy‖Bp,t

α
. Therefore

(22) ‖hy‖Hs
β
≤ C(1 − |y|)α−m−n+n−1

t , y ∈ B.
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Setting y = ρy′ we have

Iy′(ρ2) =

(
∫

S

|Λm+1(g ∗ Px′)(ρ2y′)|sdx′

)1/s

=

(
∫

S

|Λm+1(g ∗ Py)(ρx
′)|sdx′

)1/s

(23)

= Ms(hy, ρ) ≤ (1− |y|)−β‖hy‖Hs
β
.

The last two estimates yield
(
∫

S

|Λm+1(g ∗ Px′)(ρ2y′)|sdx′

)1/s

≤ C(1 − |y|)α−β−m−n+n−1

t , |y| = ρ

which is equivalent to (17). �

The first part of the above lemma combined with Proposition 4 gives the
following corollary.

Corollary 2. If c ∈ MH(Bp,t
α , F q,s

β ), where 0 < p, t ≤ ∞, 1 ≤ s ≤ q < ∞ and

m > max(α+ n−1
t − n,−1), then the function gc satisfies condition

Ts(g) = sup
0≤ρ<1

sup
y′∈S

(1−ρ)β−α+m+n−n−1

t

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

Lemma 8. Let 0 < p, t < ∞, 0 < q ≤ ∞, 1 ≤ s ≤ ∞, and m > max(α +
n−1
t − n,−1). Assume c ∈ MH(F p,t

α , Bq,s
β ). Then the function g = gc satisfies

the following condition:
(24)

Ts(g) = sup
0≤ρ<1

sup
y′∈S

(1−ρ)m+β−α+n−n−1

t

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

Next, if c ∈ MH(F p,t
α , Hs

β), where 0 < p, t < ∞, 0 < s ≤ ∞, α > 0, β ≥ 0

and m > max(α+ n−1
t − n,−1), then g = gc satisfies condition (24).

Finally, if c ∈ MH(Ht
α, H

s
β), where m > max(α+ n−1

t −n,−1), 0 < s, t ≤ ∞

and α ≥ 0, β ≥ 0, then again g = gc satisfies condition (24).

Proofs of all three statements are analogous to the proof of Lemma 7. For
the first one use (6) and (20), for the second one use (6) and (23) and for the
last one use (4) and (23). We leave details to the reader.

In our previous work all characterizations of multipliers were independent
on the dimension of the space. However, in the following theorem dimension
of the space is present in the description of the space of multipliers.

Theorem 1. Let 0 < t, p ≤ 1, 1 ≤ s ≤ ∞ and m > max(α + n−1
t − n,−1).

Then for a double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following

conditions are equivalent:
1. c ∈ MH(Bp,t

α , Hs
β).
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2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

(25)

Ts(g) = sup
0≤ρ<1

sup
y′∈S

(1−ρ)β−α+m+n−n−1

t

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

For 1 < t ≤ ∞ condition 1 implies condition 2.

Proof. The necessity of the condition (25) is contained in Lemma 7. Now we
prove sufficiency of condition (25). Let f ∈ Bp,t

α and set h = Mcf . We have,
by Lemma 6:

h(r2x′) = 2

∫ 1

0

∫

S

Λm+1(g ∗ Pξ)(rRx′)f(rRξ)(1 −R2)mRn−1dξdR.

Therefore, since s ≥ 1, we deduce

Ms(h, r
2) ≤ CTs(g)

∫ 1

0

(1−R)mM1(f, rR)(1 − rR)α−β−m−n+n−1

t Rn−1dR.

Now we use Lemma 3 from [3] and obtain

Mp
s (h, r

2) ≤ CT p
s (g)

∫ 1

0

(1 −R)mp+p−1

(1− rR)p(m+n+β−α)− p
t (n−1)

Mp
1 (f, rR)Rn−1dR

≤ CT p
s (g)(1 − r)−βp

∫ 1

0

(1−R)mp+p−1

(1 − rR)p(m+n−α)−pn−1

t

Mp
1 (f, rR)Rn−1dR.

This inequality, monotonicity of M1(f, r) and Lemma 5 give

(1 − r)βpMp
s (h, r

2) ≤ CT p
s (g)

∫ 1

0

(1−R)mp+p−1

(1 − rR)p(m+n−α)−pn−1

t

Mp
1 (f,R)Rn−1dR

≤ CT p
s (g)

∫ 1

0

(1−R)p−1+p(n−1

t +α−n)Mp
1 (f,R)dR

≤ CT p
s (g)

∫ 1

0

(1−R)αp−1Mp
t (f,R)Rn−1dR

= CT p
s (g)‖f‖

p

Bp,t
α
,

which implies ‖h‖Hs
β
≤ CTs(g)‖f‖Bp,t

α
and the proof is complete. �

Theorem 1, Lemma 8 and Proposition 4 combine to give the following result.

Theorem 2. Let 0 < t ≤ p ≤ 1 ≤ s ≤ ∞ and m > max(α + n−1
t − n,−1).

Then for a double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following

conditions are equivalent:
1. c ∈ MH(F p,t

α , Hs
β).
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2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

Ts(g) = sup
0≤ρ<1

sup
y′∈S

(1−ρ)β−α+m+n−n−1

t

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

A characterization of MH(H1
α, H

s
β), 1 ≤ s ≤ ∞, was given in [3], the next

two theorems generalize that result.

Theorem 3. Let 0 < t ≤ 1 ≤ s ≤ ∞, α ≥ 0, m > max(α + n−1
t − n,−1) and

β > 0. Then for a double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the

following conditions are equivalent:
1. c ∈ MH(Ht

α, H
s
β).

2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

(26)

Ts(g) = sup
0≤ρ<1

sup
y′∈S

(1−ρ)β−α+m+n−n−1

t

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.

Proof. The necessity of (26) is contained in Lemma 8. Let us prove sufficiency.
We choose f ∈ Ht

α and set h = Mcf . Applying the operator Λm+1 to equation
(15) we obtain Λm+1h(rx) =

∫

S
Λm+1(g ∗ Py′)(x)f(ry′)dy′. Since s ≥ 1 this

gives:

Ms(Λm+1h, r
2) ≤ M1(f, r) sup

y′∈S

‖Λm+1(g ∗ Py′)(x)‖Ls(dx′)

≤ Ts(g)(1− r)α−β−m−n+ n−1

t M1(f, r)

≤ Ts(g)(1− r)α−β−m−1Mt(f, r),

where we at the last step used Lemma 5. Hence we obtained

(1 − r)m+1+βMs(Λm+1h, r
2) ≤ C(1 − r)αMt(f, r), 0 ≤ r < 1,

and, since β > 0, this implies (1− r)βMs(h, r
2) ≤ C‖f‖Ht

α
(see [4, Chapter 7]).

Hence ‖h‖Hs
β
≤ C‖f‖Ht

α
. �

We note that the above proof of sufficiency does not work in the case β = 0.
In the following theorem we deal with unweighted Hardy spaces.

Theorem 4. Let 0 < t < 1 ≤ s ≤ ∞ and m > max(n−1
t − n,−1). Then for a

double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions

are equivalent:
1. c ∈ MH(Ht, Hs).

2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

(27)

Ts(g) = sup
0≤ρ<1

sup
y′∈S

(1 − ρ)m+n−n−1

t

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.
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Proof. As in the previous theorem, necessity of condition (27) follows from
Lemma 8. Let g = gc satisfy (27), let f ∈ Ht

α and set h = Mcf . Then, using
Lemma 6 and continuous form of Minkowski’s inequality we obtain:

Ms(h, r
2) ≤ C

∫ 1

0

Ms(Λm+1(g ∗ Py′), rR)

∫

S

|f(rRx′)|dx′(1−R)mRn−1dR

≤ CTs(g)

∫ 1

0

(1 − rR)−m−n+n−1

t (1−R)mM1(f, rR)dR

≤ CTs(g)

∫ 1

0

(1 −R)−n+n−1

t M1(f,R)dR

≤ CTs(g)‖f‖Ht ,

the last estimate is a corollary of Carleson-Duren embedding theorem (see
[1]). �

The theorem below is the first result on multipliers into Triebel-Lizorkin
spaces.

Theorem 5. Let 0 < p ≤ 1 ≤ q ≤ ∞ and m > α − 1. Then for a double

indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions are

equivalent:
1. c ∈ MH(Bp,1

α , F q,1
β ).

2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

(28) N1(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)β−α+m+1

∫

S

|Λm+1(g ∗ Px′)(ρy′)|dx′ < ∞.

Proof. Necessity of condition (28) is contained in Corollary 2. Now we choose
c such that the condition (28) is satisfied. Then, by Theorem 6 from [3] we

have Mc : Bp,1
α → B1,1

β . Since, by Proposition 5, B1,1
β →֒ F q,1

β the proof is
complete. �

The following theorem is a generalization of Theorem 3 from [3]. The proof
is included for reader’s convenience, it follows almost the same pattern as in
[3].

Theorem 6. Let 1 ≤ p ≤ q ≤ ∞, 1 ≤ s ≤ ∞ and m > α − 1. Then for a

double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions

are equivalent:
1. c ∈ MH(Bp,1

α , Bq,s
β ).

2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

(29)

Ns(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)β−α+m+1

(
∫

S

|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

< ∞.
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Proof. Since necessity of (29) is contained in Lemma 7 we prove sufficiency
of condition (29). We assume p and q are finite, the remaining cases can be
treated in a similar manner. Take f ∈ Bp,1

α and set h = Mcf . Applying the
operator Λm+1 to both sides of equation (15) we obtain

(30) Λm+1h(rx) =

∫

S

Λm+1(g ∗ Py′)(x)f(ry′)dy′.

Now we estimate the Ls norm of the above function on |x| = r:

Ms(Λm+1h, r
2) ≤

∫

S

Ms(Λm+1(g ∗ Py′), r)|f(ry′)|dy′

≤ M1(f, r) sup
y′∈S

(
∫

S

|Λm+1(g ∗ Py′)(rx′)|sdx′

)1/s

≤ M1(f, r)Ns(g)(1− r)α−β−m−1.(31)

Since,
∫ 1

0

Mp
s (h, r

2)(1− r)βp−1rn−1dr

≤ C

∫ 1

0

(1− r)p(m+1)Mp
s (Λm+1h, r

2)(1 − r)βp−1rn−1dr

(see [4]), we have

‖h‖p
Bp,s

β
≤ C

∫ 1

0

(1− r)p(m+1)Mp
s (Λm+1h, r

2)(1− r)βp−1rn−1dr

≤ CNp
s (g)

∫ 1

0

Mp
1 (f, r)(1 − r)αp−1rn−1dr

= CNp
s (g)‖f‖

p

Bp,1
α

,

and therefore ‖h‖Bp,s
β

≤ ‖f‖Bp,1
α

. Since ‖h‖Bq,s
β

≤ C‖h‖Bp,s
β

, see (12), the proof

is complete. �

Next we develop another approach to multiplier problems in harmonic func-
tion spaces that hinges upon duality results. The first of these duality results
is from [15]: (Bp,q

α )∗ ≃ Bp′,q′

α , where 1 < p < ∞, 1 ≤ q ≤ ∞ and p′ (resp. q′) is
the exponent conjugate to p (resp. q). Namely, the above identification of the
dual space is with respect to the pairing

〈f, g〉 =

∫

B

f(x)g(x)(1 − |x|2)2α−1dx, f ∈ Bp,q
α , g ∈ Bp′,q′

α .

In particular, the spaces Bp,q
α are reflexive for 1 < p < ∞, 1 ≤ q ≤ ∞.

One can easily verify that for c ∈ MH(Bp1,q1
α , Bp2,q2

α ), where 1 < p1, p2 < ∞,

1 ≤ q1, q2 ≤ ∞, the adjoint operator M∗
c : B

p′

2,q
′

2
α → B

p′

1,q
′

1
α is also a multiplier

operator generated by c.
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Theorem 7. Let 1 < p, q < ∞ and m > α − 1. Then for a double indexed

sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions are equivalent:
1. c ∈ MH(Bp,∞

α , Bq,∞
α ).

2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

(32) N1(g) < ∞.

Proof. Assume c ∈ MH(Bp,∞
α , Bq,∞

α ), then Mc maps Bp,∞
α continuously into

Bq,∞
α and therefore M∗

c = Mc maps Bq′,1
α into Bp′,1

α . Hence, by Theorem
6, condition (32) is satisfied. Conversely, assume (32) is satisfied. Then, by

Theorem 6, Mc maps Bq′,1
α into Bp′,1

α . Therefore, M∗
c = Mc maps (Bp,∞

α )∗∗ =
Bp,∞

α continuously into (Bq,∞
α )∗∗ = Bq,∞

α , and the proof is complete. �

Now we recall a duality result from [5].

Proposition 6. Let 1 < p < ∞, α > 0 and let q be the exponent conjugate to

p. Then (Ap
α)

∗ ≃ Aq
α with respect to the pairing

〈u, v〉 =

∫

B

u(x)v(x)(1 − |x|2)αdx.

Again, it is easy to see that if we have a multiplier Mc : A
p1
α → Ap2

α , where

1 < p1, p2 < ∞, then the adjoint operator M∗
c : A

p′

2
α → A

p′

1
α is also a multiplier

operator generated by the same sequence c. Therefore we have the following
proposition.

Proposition 7. MH(Ap1
α , Ap2

α ) = MH(A
p′

2
α , A

p′

1
α ), 1 < p1, p2 < ∞, α > 0.

The following duality result is also from [5].

Proposition 8. For α > −1 we have B∗
0 ≃ A1

α and (A1
α)

∗ ≃ B. Both identi-

fications are with respect to the following pairing:

(33) 〈f, g〉 =

∫

B

f(x)g(x)(1 − |x|2)αdx.

Note that for given g ∈ B integral in (33) is not necessarily convergent for all
f ∈ A1

α, however, it converges on a dense subset A2
α and extends by continuity

to A1
α, see [5] for details. Since in this situation we again have M∗

c = Mc one
immediately obtains

(34) MH(B0, B0) ⊂ MH(A1
α, A

1
α) ⊂ MH(B,B), α > −1.

This allows us to characterize multipliers from B0 to B0.

Theorem 8. Let m > −1. For a double indexed sequence c = {cjk : k ≥ 0, 1 ≤
j ≤ dk} the following conditions are equivalent:

1. c ∈ MH(B0, B0).
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2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition:

(35) Ñ1(g) = sup
0≤ρ<1

sup
y′∈S

(1 − ρ)m+1

∫

S

|Λm+1(g ∗ Px′)(ρy′)|dx′ < ∞.

Proof. Since A1
α = B1,1

α+1, Theorem 6 and (34) show that condition (35) is
necessary for c ∈ MH(B0, B0). Now we assume gc = g satisfies (35) and choose
f ∈ B0. Set h = Mcf . Since Λm+1∇ = ∇Λm+1 on h(B) we obtain, for
0 ≤ r < 1:

The proof is going to rely on the following easily checked identity
∫

S

∇−1G(y)∇g(y)dy =

∫

S

G(y)g(y)dy,

where G : B → Cn is a gradient of a harmonic function and g ∈ h(B).
Now we have

Λm+1∇h(rx) = ∇Λm+1h(rx) =

∫

S

∇x(Λm+1(g ∗ Py′)(x)f(ry′)dy′

=

∫

S

∇−1
y ∇x(Λm+1(g ∗ Py′)(x)∇yf(y)dy

′.

Therefore

|Λm+1∇h(rx)| ≤ (1− r)−1‖f‖B0

∫

S

|Λm+1∇
−1
y ∇x(g ∗ Py′)(rx′)|dy′

= (1− r)−1‖f‖B0

∫

S

|Λm+1∇
−1
y (g ∗ ∇xPx′)(ry′)|dy′

= (1− r)−1‖f‖B0

∫

S

|Λm+1∇
−1
y (g ∗ ∇yPx′)(ry′)|dy′

= (1− r)−1‖f‖B0

∫

S

|Λm+1(g ∗ Px′)(ry′)|dy′

≤ Ñ1(g)‖f‖B0
(1− r)−m−2, r ∈ I, x ∈ B.

Therefore M∞(Λm+1∇h, r2) ≤ C(1 − r)−m−2 for all r ∈ I. This implies (see
[4], Chapter 7) that M∞(∇h, r2) ≤ C(1− r)−1. This proves that Mc maps B0

into B. Since harmonic polynomials are dense in B0 (see [6]), and Mc maps
harmonic polynomials into harmonic polynomials it follows that Mc maps B0

into B0. �

The following proposition is a partial extension of Theorem 7.

Proposition 9. Let 0 < p ≤ 1, p ≤ q ≤ ∞ and m > α−1. If a double indexed

sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} satisfies the following condition:

(36) N1(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)m+1−α+β

∫

S

|Λm+1(g ∗ Px′)(ρy′)|dx′ < ∞,

where g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′), then c ∈ MH(Bp,∞

α , Bq,∞
β ).
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Proof. Let us assume that condition (36) is satisfied. Let f ∈ Bp,∞
α (B) and set

h = c ∗ f . We have, using Lemma 6:

h(rρx′) =

∫

S

(g ∗ Px′)(ry′)f(ρy′)dy′

= 2

∫ 1

0

∫

S

Λm+1(g ∗ Px′)(rRξ)f(ρRξ)(1 −R2)mRn−1dξdR.(37)

Using (37) and M∞(f, ρR) ≤ M∞(f,R) we obtain, for x = rx′ ∈ B:

|h(rρx′)| ≤ 2

∫ 1

0

∫

S

|Λm+1(g ∗ Px′)(rRξ)|M∞(f,R)(1−R2)mRn−1dξdR.

Now letting ρ → 1 and using condition (36) we obtain

|h(rx′)| ≤ 2

∫ 1

0

M∞(f,R)(1−R2)mRn−1

∫

S

|Λm+1(g ∗ Px′)(rRξ)|dξdR

≤ 2m+1

∫ 1

0

M∞(f,R)(1−R)mRn−1

∫

S

|Λm+1(g ∗ Pξ)(rRx′)|dξdR

≤ 2m+1N1(g)

∫ 1

0

M∞(f,R)(1− R)mRn−1(1 − rR)α−β−m−1dR.

Since M∞(f,R) is an increasing function we can apply Lemma 3 from [3] to
obtain

|h(rx′)|p ≤ C

∫ 1

0

Mp
∞(f,R)

(1−R)mp+p−1

(1− rR)p(m+1+β−α)
Rn−1dR.

This estimate is valid for all x′ ∈ B and therefore gives estimate for Mp
∞(h, r)

which is used, together with Lemma 2, in the following inequalities:

‖h‖p
Bp,∞

β

=

∫ 1

0

Mp
∞(h, r)(1 − r)βp−1rn−1dr

≤ C

∫ 1

0

Mp
∞(f,R)(1−R)mp+p−1Rn−1

∫ 1

0

(1− r)βp−1

(1 − rR)p(m+1+β−α)
rn−1drdR

≤ C

∫ 1

0

Mp
∞(f,R)(1−R)αp−1Rn−1dR = C‖f‖p

Bp,∞
α

.

Since, by (12), ‖h‖Bq,∞
β

≤ C‖h‖Bp,∞
β

for p ≤ q, the proof is complete. �

Our last theorem shows that restriction 1 ≤ p in Theorem 6 can be removed
in the case s = ∞.

Theorem 9. Let 0 < p ≤ q ≤ ∞ and m > α − 1. Then for a double indexed

sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions are equivalent:
1. c ∈ MH(Bp,1

α , Bq,∞
β ).
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2. The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and sat-

isfies the following condition

(38) N∞(g) < ∞.

Proof. The case 1 ≤ p ≤ ∞ was settled in Theorem 6. Assume 0 < p < 1, the
necessity of the condition N∞(g) < ∞ was established in Lemma 7. Now we
assume g = gc satisfies N∞(g) < ∞ and we use the same method of proof as
in Proposition 9. Let f ∈ Bp,1

α and set h = Mcf . Starting from (37) and using
M1(f, ρR) ≤ M1(f,R) we obtain

|h(rρx′)| ≤ 2

∫ 1

0

(1 −R2)mRn−1M1(f,R) sup
ξ,x′∈S

|Λm+1(g ∗ Px′)(rRξ)|dR.

Then, analogously to the proof of Proposition 9, we let ρ → 1 to obtain, using
condition (38):

|h(rx′)| ≤ 2m+1N∞(g)

∫ 1

0

M1(f,R)(1−R)m(1 − rR)α−β−m−1Rn−1dR.

Since M1(f,R) is an increasing function, one can follow the same reasoning
as in the proof of Proposition 9, replacing M∞(f,R) by M1(f,R), to obtain
‖h‖Bp,∞

β
≤ C‖f‖Bp,1

α
. That suffices, due to embedding (12). �
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