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THE FUNCTION ANALYTIC IN THE EXTERIOR OF

A DISC AND ITS APPLICATION TO PERIODIC

COMPLEX OSCILLATION

Zong-Xuan Chen and Shi-An Gao

Abstract. We consider the value distribution of a class of the functions
analytic in the exterior of a disc and their applications to complex os-
cillation theory of differential equations with periodic coefficients in the
complex plane.

1. Introduction and the function analytic in the exterior of a disc

We use standard notations from the value distribution theory (see [13, 14]).
We denote the order of growth of a meromorphic function f(z) by σ(f), and
denote respectively the exponents of convergence of zeros and distinct zeros for
f(z) by λ(f) and λ(f). We define respectively

(1.1)

σe(f) = lim
r→∞

logT (r, f)

r
,

λe(f) = lim
r→∞

log+N(r, 1/f)

r
,

λe(f) = lim
r→∞

log+N(r, 1/f)

r

to be the e-type order, the e-type exponents of convergence of zeros and distinct
zeros for f(z) ([7]).

Assume A(z) to be a periodic entire function with period 2πi. Thus, we
can write A(z) = B(ez), where B(ζ) is clearly analytic in 0 < |ζ| < ∞ (see
[1, p. 7]). For B(ζ), it is easy to see that it has the representation (from its
Laurent expansion)

(1.2) B(ζ) = g1

(
1

ζ

)
+ g2(ζ),
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where both g1(t) and g2(t) are entire functions. It is shown in [7] that

(1.3) σe(A) = max{σ(g1), σ(g2)}.

If f(z) is an analytic function in R0 < |z| <∞, then it has the representation
(see [16, p. 15])

(1.4) f(z) = zmψ(z)F (z),

wherem is an integer, ψ(z) is analytic and non-vanishing on |z| > R0 (including
z = ∞), F (z) is an entire function with

(1.5) F (z) = u(z)eh(z),

where u(z) is a Weierstrass product formed by zeros of f(z) in R0 < |z| <∞,
h(z) is an entire function. Thus, since B(ζ) is analytic in R0 < |z|, by (1.4),
we have the representation

(1.6) B(ζ) = ζnφ(ζ)b(ζ),

where n is an integer, φ(ζ) is analytic and non-vanishing on |ζ| > R0 (including
ζ = ∞), b(ζ) is entire. It is shown in [7] that

(1.7) σ(g2) = σ(b).

Setting t = 1/ζ, B(ζ) analytic in 0 < |ζ| < R0 is changed to B∗(t) = B(1/t)
analytic in 1

R0
< |t| < ∞. Thus, it has a similar representation as (1.6) with

b(ζ) replaced by another entire function, denoted by b∗(t). We have similarly
as (1.7)

(1.8) σ(g1) = σ(b∗).

Thus, (1.7) and (1.8) together with (1.3) yield

(1.9) σe(A) = max{σ(b), σ(b∗)}.

It is shown in [7] (it is proved only in the case R0 = 1 there, but we will explain
that it is still valid for any R0 > 0 later)

(1.10) λe(A) = max{λ(b), λ(b∗)}.

By the same reasoning, we also have

(1.11) λe(A) = max{λ(b), λ(b∗)}.

We also need to make use of the functions meromorphic in R0 < |z| <∞. If
w(z) is such a function, then by a similar argument as for (1.4), w(z) has the
representation

(1.12) w(z) = zm0ψ0(z)h(z),

where m0 is an integer, ψ0(z) is analytic and non-vanishing on |z| > R0 (in-
cluding z = ∞), h(z) is meromorphic in the plane. In fact, we may write

(1.13) h(z) =
u(z)

v(z)
eg(z),
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where u(z), v(z) are Weierstrass products formed, respectively, from the zeros
and poles of w(z) in R0 < |z| < ∞, and g(z) is an entire function. The
properties of w(z) can be described by a Nevanlinna type theory in R0 < |z| <
∞ (see [3, pp. 97–99]). Denote the characteristic function of w(z) by T1(r, w)
([1]) which is defined by

T1(r, w) = m1(r, w) +N1(r, w),

where

(1.14) m1(r, w) =
1

2π

∫ 2π

0

log+ |w(reiθ)|dθ,

N1(r, w) is the counting function for the poles of w(z) in R0 < |z| ≤ r. It is
easy to deduce from (1.12) that

(1.15) m1(r, w) = m(r, h) +O(log r).

Evidently,

(1.16) N1(r, w) = N(r, h).

Therefore,

(1.17) T1(r, w) = T (r, h) +O(log r).

We get from T (r, h)

(1.18) T1

(
r,

1

w

)
= T1(r, w) +O(log r).

We define that w(z) meromorphic in R0 < |z| < ∞ is rational, if w(z) is
analytic or has a pole at z = ∞. Contrary, we say that it is transcendental. It
is easy to see that w(z) is rational if and only if T1(r, w) = O(log r).

If w(z) is transcendental, (1.17) may be easy written to

(1.17a) T1(r, w) = (1 + o(1))T (r, h);

and if w(z) is rational, then

(1.17b) T1(r, w) = O(log r), T (r, h) = O(log r).

We denote the order of growth of w(z) by σ1(w), and denote respectively
exponents of convergence of zeros and distinct zeros of w(z) by λ1(w) and

λ1(w). They are defined by

(1.19)

σ1(w) = lim
r→∞

log+ T1(r, w)

log r
,

λ1(w) = lim
r→∞

log+N1(r,
1
w )

log r
,

λ1(w) = lim
r→∞

log+N1(r,
1
w )

log r
.
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From (1.17a), (1.17b) and an analogue of (1.16), we get

(1.20) σ1(w) = σ(h), λ1(w) = λ(h), λ1(w) = λ(h).

Since B(ζ) is analytic in 0 < |ζ| < ∞ and (1.20), by (1.6), B∗(t) = B(1t )
and denotation of b∗(t), we obtain

(1.21)

σ1(B) = σ(b), σ1(B
∗) = σ(b∗),

λ1(B) = λ(b), λ1(B
∗) = λ(b∗),

λ1(B) = λ(b), λ1(B
∗) = λ(b∗).

Thus, (1.21) together with (1.9), (1.10) and (1.11) gives

(1.22)

σe(A) = max{σ1(B), σ1(B
∗)},

λe(A) = max{λ1(B), λ1(B
∗)},

λe(A) = max{λ1(B), λ1(B
∗)}.

Remark 1.1. We need to show that, for a function B(ζ) analytic in 0 < |ζ| <∞,
the quantities σ1(B), σ1(B

∗), λ1(B), λ1(B
∗), λ1(B), λ1(B

∗) have not any rela-
tions to R0(> 0), i.e., they are only the quantities which portray the properties
of B(ζ) in the neighborhood of ζ = ∞ and ζ = 0.

2. Main results

Many authors (see [1, 2, 4–12, 15, 17]) consider complex oscillation theory
of differential equations. Bank and Langley proved in [2]:

Theorem A. Suppose that k ≥ 2 and that D0, . . . , Dk−2 are entire functions

with period 2πi such that D0 is transcendental in ez with

(2.1) lim
r→∞

log logM(r,D0)

r
= c <

1

2
.

Suppose further that if k ≥ 3, then for each j with 1 ≤ j ≤ k−2, the coefficient

Dj is either rational in ez or satisfies

(2.2) lim
r→∞

log logM(r,Dj)

r
< c.

Then the equation

(2.3) f (k) +Dk−2f
(k−2) + · · ·+D0f = 0

cannot have linearly independent solutions f, g with

(2.4) log+N(r, 1/fg) = O(r).

The main purpose of this article is to improve Theorem A, and prove the
following theorems.
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Theorem 2.1. Let k ≥ 3, and A(z), A0(z), . . . , Ak−2(z) be periodic entire

functions with period 2πi, i.e., A(z) = B(ez), Aj(z) = Bj(e
z) with B(ζ) and

Bj(ζ) analytic in 0 < |ζ| <∞, satisfying for j = 0, . . . , k − 2,

(i) λ1(B) < σ1(B);
(ii) σ1(Bj) < σ1(B);
(iii) σ1(B

∗
j ) < max{σ1(B), σ1(B

∗)}, where B∗(t) = B(1/t) and B∗
j (t) =

Bj(1/t).
If the equation

(2.5) w(k) +Ak−2w
(k−2) + · · ·+ (A0 +A)w = 0

has a solution f(z) 6≡ 0 satisfying

(iv) λe(f) < σ1(B),
then B(ζ) has no zeros in 0 < |ζ| <∞ (and thus A(z) has no zeros there), and
has the form

(2.6) B(ζ) = ζmeg(ζ),

where m is an integer, g(ζ) is analytic in 0 < |ζ| <∞.

Remark 2.1. (1) The condition (i) in Theorem 2.1 only makes demand on the
property of the dominant coefficient B(ζ) in the neighborhood of ζ = ∞, and
B(ζ) can be arbitrary in the neighborhood of ζ = 0, i.e., B∗(t) can be arbitrary
in the neighborhood of t = ∞, we call the property of B(ζ) the “single-side
property”.

(2) If we replace λ1(B) < σ1(B) by λ1(B) < σ1(B) in the condition (i), then
σ1(B) must be a positive integer or infinity from (1.21). Thus, the “single-
side” order of dominant coefficient B(ζ) in the condition (i) is more general
than either positive integer order or infinity order. The same explanations
apply to Theorem 2.2 below.

Theorem 2.2. Suppose the assumption of Theorem 2.1 for k, A(z), A0(z),
. . . , Ak−2(z) and the hypotheses (i)-(iii) holds. If A(z) has at least one zero,

then every solution f(z) 6≡ 0 of equation (2.5) satisfies

λe(f) ≥ λe(f) ≥ σ1(B),

and hence, λ(f) = λ(f) = ∞.

Remark 2.2. Though Theorems 2.1 and 2.2 does not contain Theorem A com-
pletely, the conditions of Theorems 2.1 and 2.2 are more general than one of
Theorem A. This can be seen from the following.

(i) In Theorem A, set D0(z) = d(ζ) (ζ = ez), so that, by (1.22), we see that

σe(D0) = lim
r→∞

log logM(r, D0)

r
= c <

1

2

if and only if

σe(D0) = max{σ1(d), σ1(d
∗)} = c <

1

2
.
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Thus, in Theorem 2.1, we omitted the condition “c < 1
2” (this is a very slashing

condition) of Theorem A.
(ii) Though Theorem A does not involve zeros of coefficients obviously, the

condition max{σ1(d), σ1(d
∗)} = c < 1

2 (that is (2.1)) implies

λe(D0) = max{λ1(d), λ1(d
∗)} = max{σ1(d), σ1(d

∗)} = σe(D0) = c <
1

2

and λe(Dj) = σe(Dj) < σe(D0) (j = 1, . . . , k − 2).

In Theorem 2.1, the condition (i) implies 0 ≤ λ1(B) < λ1(B) ≤ σ1(B) or
0 ≤ λ1(B) = λ1(B) < σ1(B), and Aj (j = 0, 1, . . . , k− 2) do not involve zeros
essentially. Theorem 2.2 only demands that “A(z) has at least one zero”.

Thus, our Theorems 2.1 and 2.2 greatly generalized Theorem A, also gener-
alized results of [7, 9, 11] (note: in [7, 9, 11], the order of the outer function is
supposed that is not equal to positive integer or infinity). And the our proofs
of following Theorems 2.1 and 2.2 are also totally different from proofs of [2,
7, 9, 11].

3. Lemmas for proof of main results

Lemma 3.1. If w(z) is meromorphic in R0 < |z| <∞, then

(3.1) m1

(
r,
w(k)

w

)
= S1(r, w),

where S1(r, w) denotes any non-negative quantity satisfying

S1(r, w) = o{T1(r, w)} n.e.

(“n.e.” denotes: as r → ∞ outside possibly a set of r with finite linear measure).

Proof. Since (1.12) and m1

(
r,
ψ

(j)
0

ψ0

)
= O(1), j = 1, . . . , k, we easy get that

m1

(
r,
w(k)

w

)
≤

k∑

j=1

cjm

(
r,
h(j)

h

)
+O(1) = S(r, h) = o{T (r, h)} n.e.,

where cj (j = 1, . . . , k) are positive integers. By (1.17a) and (1.17b), we see
(3.1) holds. �

The following Lemma 3.2 is a generalized Clunie type lemma. Apart from
some obvious modification, its proof is identical to that for Lemma 2.1 in [12]
and for Lemma 3.3 in [13]. So we omit its proof.

Lemma 3.2. Let w(z) be a function meromorphic in R0 < |z| < ∞ and

satisfying wnP (w) = Q(w), where P (w) and Q(w) are differential polynomials

in w(z) with coefficients bj(z) meromorphic in R0 < |z| < ∞, and the degree
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of Q(w) is at most n. Then for r > R0,

m1(r, P (w)) = O





∑

j

m1(r, bj) + S1(r, w)




 .

Remark 3.1. Let R0 > 0 be a fixed constant. Two conditions have been used
frequently in order to characterize the growth of a nonnegative and increasing
function R(r) in (R0,+∞). That is, either R(r) = S1(r, w) = o{T1(r, w)} n.e.
as r → ∞, or σR < σ1(w), where

σR = lim
r→∞

logR(r)

log r
.

However, they are not equivalent in general. To unify these practices, we
apply the following “combined dominant condition”. There exists a constant
d < σ1(w) such that R(r) = S1(r, w) + o(rd) as r → ∞. For using this
dominance, we require the following fact, which is easily checked. If at least
one of R(r) = S1(r, w) and R(r) = o(rd) as r → ∞ holds, then R(r) =
S1(r, w)+o(r

d) as r → ∞ must hold; equivalently, if R(r) 6= S1(r, w)+o(r
d) as

r → ∞, then R(r) 6= S1(r, w) and R(r) 6= o(rd) as r → ∞ must simultaneously
hold. Hence, the “combined dominant condition” is more general that either
one of the two conditions R(r) = S1(r, w) and σR < σ1(w).

The following Lemma 3.3 is a little revised result of Tumure-Clunie type,
that is a generalization of Theorem 3.9 in [13]. We use the “combined dominant
condition” in Lemma 3.3. Its proof is similar to that of Theorem 3.9 in [13].

Lemma 3.3. Let w(z) be a function meromorphic and transcendental in R0 <
|z| <∞, and

g(z) = w(z)n + Pn−1(w),

providing that there exists a positive constant d < σ1(w) (if σ1(w) = 0, set

d = 0) such that

N1(r, w) +N1(r, 1/g) = S1(r, w) + o(rd),

where Pn−1(w) is a differential polynomial in w(z) with degree at most n− 1,
its coefficients bj(z) are meromorphic in R0 < |z| <∞ and satisfies

T1(r, bj) = S1(r, w) + o(rd).

Then g(z) = h(z)n, where h(z) = w(z) + a(z), a(z) is a function meromorphic

in R0 < |z| <∞ and satisfies

T1(r, a) = S1(r, w) + o(rd).

The function na(z)h(z)n−1 can be obtained by the substituting h for w, h′ for
w′, etc in terms of degree n− 1 in Pn−1(w).

The following Lemma 3.4 is Lemma 3.5 in [13].
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Lemma 3.4. Suppose that F (z) is meromorphic in a domain D and set

F ′(z)/F (z) = w(z).

Then we have for n ≥ 1

F (n)(z)

F (z)
= wn +

n(n− 1)

2
wn−2w′ + αnw

n−3w′′ + βnw
n−4w′2 + Pn−3(w),

where αn = 1
6n(n − 1)(n − 2), βn = 1

8n(n − 1)(n − 2)(n − 3), and Pn−3(w)
is a differential polynomial in w(z) with constant coefficients, which vanishes

identically for n ≤ 3 and has the term of degree n− 3 when n > 3.

Lemma 3.5. Let F (z) be meromorphic in R0 < |z| < ∞ with F ′/F tran-

scendental. And let k ≥ 2, and D0(z), D1(z), . . . , Dk−1(z) be analytic in R0 <
|z| < ∞. Suppose again that there exists a positive constant d < σ1(F

′/F )
(if σ1(F

′/F ) = 0, set d = 0) such that T1(r,Dj) = S1(r, F
′/F ) + o(rd),

j = 0, 1, . . . , k − 1, and

(3.2) N1(r, F ) +N1(r,
1

F
) +N1(r,

1

Lk(F )
) = S1(r,

F ′

F
) + o(rd),

where

(3.3) Lk(F ) = F (k) +Dk−1F
(k−1) + · · ·+D0F.

Then Lk(F )/F = ekϕ(z)+c, where c is a constant, both ϕ′(z) and ekϕ(z)+c are

analytic in R0 < |z| <∞ with ekϕ(z)+c no zeros in R0 < |z| <∞, and we have

(3.4)
k(k − 1)(k + 1)

24
(ϕ′2 − 2ϕ′′)−

k − 1

2k
D2
k−1 −

k − 1

2
D′
k−1 +Dk−2 ≡ 0.

Proof. Set w(z) = F ′(z)/F (z). We get from Lemma 3.4
(3.5)

Lk(F )

F
= wk +

k(k − 1)

2
wk−2w′ +Dk−1w

k−1 + αkw
k−3w′′ + βkw

k−4w′2

+Dk−1
(k − 1)(k − 2)

2
wk−3w′ +Dk−2w

k−2 + P̃k−3(w) = g(z),

where P̃k−3(w) is a differential polynomial in w with degree at most k − 3, its
coefficients are polynomials in D0, D1, . . . , Dk−1. Recall that w(z) is transcen-
dental, it follows from (3.2) that

N1(r,
1

g
) = N1(r,

F

Lk(F )
) ≤ N1(r, F ) +N1(

1

Lk(F )
) = S1(r, w) + o(rd),

N1(r, w) = N1(r,
F ′

F
) = N1(r, F ) +N1(r,

1

F
) = S1(r, w) + o(rd).

If we now take into the consideration of the hypotheses on D0, D1, . . . , Dk−1,
then the conditions of Lemma 3.3 are satisfied. Therefore, (3.5) becomes g(z) =
h(z)k, where h(z) = w(z) + a(z) and a(z) is meromorphic in R0 < |z| <∞.

ka(z)h(z)k−1 =
k(k − 1)

2
h(z)k−2h′(z) +Dk−1h(z)

k−1,
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i.e.,

a(z) =
k − 1

2

h′

h
+
Dk−1

k
.

By Lemma 3.1 and the hypotheses of the lemma, we see that

T1(r, a) = S1(r, w) + o(rd).

Setting ϕ′ = 2
k−1a−

2
k(k−1)Dk−1, then

a =
k − 1

2
ϕ′ +

Dk−1

k
,

and
h′ = ϕ′h.

From h′ = ϕ′h we get h = eϕ+c1 , where c1 is a constant. Thus, g(z) =
Lk(F )/F = ekϕ+c, where c = kc1.

Now we need only to prove that both ϕ′ and ekϕ+c are analytic in R0 <
|z| <∞, (3.4) holds and that ekϕ+c has no zeros in R0 < |z| <∞.

From h′ = ϕ′h we get h′′ = (ϕ′′ + ϕ′2)h, . . .. Substituting

w = h− a, w′ = ϕ′h− a′, w′′ = (ϕ′′ + ϕ′2)h− a′′, . . .

into (3.5) gives

(3.6) (h− a)k +
k(k − 1)

2
(h− a)k−2(ϕ′h− a′) +Dk−1(h− a)k−1+

αk(h− a)k−3{(ϕ′′ + ϕ′2)h− a′′}+ βk(h− a)k−4(ϕ′h− a′)2+

Dk−1
(k − 1)(k − 2)

2
(h− a)k−3(ϕ′h− a′)+Dk−2(h− a)k−2+ P̃k−3(h− a) ≡ hk.

Expanding the left-hand side of (3.6) and gathering the terms according to the

degree of h, and noting that a = k−1
2 ϕ′ + Dk−1

k , we get

(3.7) Bk−2h
k−2 +Bk−3h

k−3 + · · ·+B0 ≡ 0,

where Bj(j = 0, . . . , k − 2) are differential polynomials in ϕ′ and Dk−1, its co-
efficients are linear polynomials in D0, D1, . . . , Dk−2 with constant coefficients.
It is easy to see that

T1(r, Bj) = S1(r, w) + o(rd).

If k = 2, then Bk−2 = B0 ≡ 0 from (3.7). If k > 2, applying Lemma 3.2 to
(3.7) gives

m1(r, Bk−2h) = O{

k−3∑

j=0

m1(r, Bj) + S1(r, h)} = S1(r, w) + o(rd).

Since

N1(r, Bk−2h) ≤ N1(r, Bk−2) +N1(r, h)

= N1(r, Bk−2) +O{N1(r, g)}

= N1(r, Bk−2) +O{N1(r, w)}



1424 ZONG-XUAN CHEN AND SHI-AN GAO

= S1(r, w) + o(rd),

we get

T1(r, Bk−2h) = S1(r, w) + o(rd).

If Bk−2 6≡ 0, then since w(z) is transcendental, we get

T1(r, h) = T1(r, Bk−2h/Bk−2)

≤ T1(r, Bk−2h) + T1(r, Bk−2) +O(log r)

= S1(r, w) + o(rd) +O(log r)

= S1(r, w) + o(rd).

Thus,

T1(r, w) = T1(r, h− a) = S1(r, w) + o(rd),

if σ1(
F ′

F ) = σ1(w) > d, but above formula implies σ1(w) ≤ d, this is a contradic-
tion; if σ1(w) = 0, then d = 0, and above formula implies T1(r, w) = S1(r, w),
this is also a contradiction. Hence, we must have Bk−2 ≡ 0. Applying the
same reasoning repeatedly, we can successful prove Bk−3 ≡ · · · ≡ B0 ≡ 0.
Calculating (3.6) directly gives

(3.8) Bk−2 =
k(k − 1)(k + 1)

24
(ϕ′2 − 2ϕ′′)−

k − 1

2k
D2
k−1 −

k − 1

2
D′
k−1 +Dk−2.

(3.8) together with Bk−2 ≡ 0 yields (3.4). We can check that ϕ′ is analytic in
R0 < |z| <∞ from (3.4). Otherwise, assume z0 is a pole of ϕ′ in R0 < |z| <∞.
Noting that both Dk−1 and Dk−2 are analytic in R0 < |z| <∞, it can be seen
from (3.4) that z0 must be a simple pole of ϕ′, and the principal part of Laurent
expansion of ϕ′ in the neighborhood of z0 is − 2

z−z0
. From this and

h′

h
= ϕ′,

F ′

F
= h−

k − 1

2
ϕ′ −

Dk−1

k
,

we can obtain in the neighborhood of z0 that

F = (z − z0)
meb(z) exp

{
d0

z − z0

}
,

where m is an integer, b(z) is analytic in this neighborhood, d0 is a non-zero
constant. Thus, F (z) has an essential singularity at z0. This contradicts that
F (z) is meromorphic in R0 < |z| <∞.

This establishes that ϕ′ is analytic and so it has the expansion ϕ′=
∑+∞

−∞ ajz
j

in R0 < |z| <∞. Thus,

(3.9) eϕ(z)+c1 = za−1 exp





∫
(

+∞∑

j=−∞,j 6=−1

ajz
j)dz



 .

Since h is single valued, a−1 must be an integer. This indicates that eϕ is
analytic and has no zeros in R0 < |z| <∞. Thus, ekϕ+c is analytic and has no
zeros in R0 < |z| <∞. �
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Lemma 3.6. Let k ≥ 2, and D0(z), D1(z), . . . , Dk−1(z), D(z) be analytic in

R0 < |z| < ∞ with D(z) transcendental. Also assume that there exists a

positive constant d < σ1(D) (if σ1(D) = 0, set d = 0) such that

N1(r, 1/D) = S1(r,D) + o(rd),

T1(r,Dj) = S1(r,D) + o(rd), j = 0, 1, . . . , k − 1.

If the equation

(3.10) y(k) +Dk−1y
(k−1) + · · ·+D1y

′ + (D0 +D)y = 0

has an analytic solution F (z) 6≡ 0 in R0 < |z| < ∞, and F (z) satisfies that

there exists a positive constant d1 < σ1(D) (if σ1(D) = 0, set d1 = 0) such that

N1(r, 1/F ) = S1(r,D) + o(rd1),

then D has no zeros in R0 < |z| < ∞ and it has the form D = ekϕ+c0 , where
ϕ′ is analytic in R0 < |z| <∞, c0 is a constant, and we have the relation (3.4).

Proof. Clearly, if σ1(D) > 0, without loss of generality, we may assume d1 < d.
Substituting F (z) for y in (3.10) gives

(3.11) Lk(F ) = −DF,

where Lk(F ) is defined in (3.3). Hence
(3.12)

N1(r,
1

Lk(F )
) = N1(r,

1

DF
) ≤ N1(r,

1

F
) +N1(r,

1

D
) = S1(r,D) + o(rd).

In addition, from Lemma 3.4, setting w = F ′/F , we have

(3.13)
Lk(F )

F
= wk + Pk−1(w),

where Pk−1(w) is a differential polynomial in w with degree at most k−1, each
coefficient of which is a polynomial in D0, D1, . . . , Dk−1. Combining (3.11) and
(3.13) gives

(3.14) wk + Pk−1(w) = −D.

It is easy to get from (3.14)

T1(r,D) = O{T1(r, w) +

k−1∑

j=0

T1(r,Dj)} n.e.

= O{T1(r, w) + S1(r,D) + rd} n.e..

Thus,

(3.15) T1(r,D) = O{T1(r, w) + rd} n.e..

On the other hand, applying Lemma 3.2 to (3.14) gives

m1(r, w) = O{
k−1∑

j=0

m1(r,Dj) +m1(r,D) + S1(r, w)}
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= O{T1(r,D) + rd + S1(r, w)} n.e..

Since (note that F (z) is analytic in R0 < |z| <∞)

N1(r, w) = N1(r,
F ′

F
) = N1(r,

1

F
) = S1(r,D) + o(rd),

we get

(3.16) T1(r, w) = O{T1(r,D) + rd} n.e..

It is easy to see that σ1(w) = σ1(D) from (3.15) and (3.16). Hence, from (3.15),
the assumptions of this lemma and (3.12), and, noting that F (z) is analytic in
R0 < |z| <∞, we can deduce

T1(r,Dj) = S1(r,
F ′

F
) + o(rd), j = 0, 1, . . . , k − 1,

N1(r, F ) +N1(r,
1

F
) +N1(r,

1

Lk(F )
) = S1(r,

F ′

F
) + o(rd).

In addition, (3.15) implies that w = F ′/F is transcendental since D is tran-
scendental and σ1(w) = σ1(D). Therefore, the conditions of Lemma 3.5 are
satisfied. And thus, Lk(F )/F = ekϕ+c. Combining this and (3.11) gives
D = −ekϕ+c = ekϕ+c0 , where c0 = c + πi. The remaining conclusions are
the same as stated in Lemma 3.5. �

The following Lemma 3.7 is Theorem 2.1 in [10] which generalizes Theorem
2.1 in [2].

Lemma 3.7. Let k ≥ 2, and A0(z), . . . , Ak−2(z) be periodic entire functions

with period 2πi, for k ≥ 3, suppose that there exists a positive constant d <
σe(A0) (if σe(A0) = 0, set d = 0) such that

(3.17) T (r, Aj) = S(r, A0) + o(edr), j = 1, . . . , k − 2.

If the equation

(3.18) w(k) +Ak−2w
(k−2) + · · ·+A0w = 0

has a solution f(z) 6≡ 0, and f(z) satisfies that there exists a positive constant

d1 < σe(A0) (if σe(A0) = 0, set d1 = 0) such that

(3.19) log+N(r,
1

f
) = S(r, A0) + o(ed1r),

then there exists an integer q, 1 ≤ q ≤ k, such that f(z) and f(z + q2πi) are

linearly dependent.

Lemma 3.8. Let q be a positive integer, U(z) be an entire function with peri-

odic q2πi and satisfy

U(z) = G(e
z
q ) = G(ζ),

where ζ = e
z
q , G(ζ) is analytic in 0 < |ζ| <∞, then

λe(U) =
1

q
max{λ1(G), λ1(G

∗)}; λe(U) =
1

q
max{λ1(G), λ1(G

∗)},
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where G∗(t) = G(1t ), t =
1
ζ .

Proof. Let n(D, 1
F ) be the number of zeros of F (z) in the set D. Set |ζ| = ρ.

Since the transformation ζ = e
z
q is an one-one correspondence between the set

{z : −q log ρ ≤ Re z ≤ q log ρ;−qπ < Im z ≤ qπ}

and the set

{ζ : ρ−1 ≤ |ζ| ≤ ρ},

where |ζ| = ρ, we see that

n

(
ρ−1 ≤ |ζ| ≤ ρ,

1

G(ζ)

)

= n

(
(−q log ρ ≤ Re z ≤ q log ρ;−qπ < Im z ≤ qπ),

1

U(z)

)

≤ n

(
|z| ≤ q(log ρ+ π),

1

U(z)

)

≤ 2

(
q(log ρ+ π)− qπ

2π
+ 1

)

n

(
(−q log ρ ≤ Re z ≤ q log ρ;−qπ < Im z ≤ qπ),

1

U(z)

)

=

(
q log ρ

π
+ 2

)
n

(
(ρeπ)−1 ≤ |ζ| ≤ ρeπ,

1

G(ζ)

)
.

Thus, we get

λe(U) =
1

q
lim
ρ→∞

logn
(
ρ−1 ≤ |ζ| ≤ ρ, 1

G(ζ)

)

log ρ
.

Since

n

(
ρ−1 ≤ |ζ| ≤ ρ,

1

G(ζ)

)
= n

(
1 ≤ |ζ| ≤ ρ,

1

G(ζ)

)

+ n

(
ρ−1 ≤ |ζ| ≤ 1,

1

G(ζ)

)
,

we obtain

λe(U) =
1

q
max{λ1(G), λ1(G

∗)}.

By the same reasoning, we also get

λe(U) =
1

q
max{λ1(G), λ1(G

∗)},
�

Apart from the representation (1.2), the function B(ζ) has another repre-
sentation to be given in the following lemma.
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Lemma 3.9. The function B(ζ) is analytic in 0 < |ζ| < ∞ if and only if it

can be represented to

(3.20) B(ζ) = ζn0h1

(
1

ζ

)
h2(ζ),

where n0 is an integer, both h1(t) and h2(t) are entire functions with h1(0)h2(0)
6= 0.

Proof. It is evident that B(ζ) is analytic in 0 < |ζ| <∞ if it has representation
(3.20). We now assume B(ζ) is analytic in 0 < |ζ| < ∞, and deduce (3.20)
holds. We denote the Weierstrass products formed from zeros of B(ζ) in R0 ≤
|ζ| <∞ by H2(ζ) and zeros of B∗(t) = B(1/t) in 1

R0
≤ |t| <∞ by H1(t). Set

H(ζ) = H1(1/ζ)H2(ζ).

Then B′(ζ)
B(ζ) − H′(ζ)

H(ζ) is analytic in 0 < |ζ| <∞. Thus, it has the expansion

B′(ζ)

B(ζ)
−
H ′(ζ)

H(ζ)
=

+∞∑

j=−∞

bjζ
j .

From this we get

B(ζ)

H(ζ)
= ζb−1 exp





∫
(

+∞∑

j=−∞,j 6=−1

bjζ
j)dζ



 .

Since the left side of the above representation is a single-valued function, so
b−1 must be an integer. This yields (3.20) with n0 = b−1 and

(3.21)






h1(
1
ζ ) = H1(

1
ζ )e

ϕ1(1/ζ), h2(ζ) = H2(ζ)e
ϕ2(ζ),

ϕ1(
1
ζ ) =

∫
(

−2∑
j=−∞

bjζ
j)dζ, ϕ2(ζ) =

∫
(
+∞∑
j=0

bjζ
j)dζ,

where ϕ1(t), ϕ2(t), h1(t) and h2(t) are evidently entire functions. It is easy to
see that H1(0)H2(0) 6= 0, and thus h1(0)h2(0) 6= 0. �

Representation (3.20) may change as R0 changes, so it is not unique. But
from (3.20) we may get that as making from (1.6)

(3.22)






σe(A) = max{σ(h1), σ(h2)},

λe(A) = max{λ(h1), λ(h2)}, λe(A) = max{λ(h1), λ(h2)},

σ1(B) = σ(h2), σ1(B
∗) = σ(h1),

λ1(B) = λ(h2), λ1(B
∗) = λ(h1),

λ1(B) = λ(h2), λ1(B
∗) = λ(h1).
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4. Proofs of Theorems 2.1 and 2.2

Theorem 2.2 can be directly obtained from Theorem 2.1, we only prove
Theorem 2.1

Proof of Theorem 2.1. It follows from (ii), (iii) and (1.22) that σe(Aj) < σe(A)
for j ≥ 0 and σe(Aj) < σe(A0 + A) for j > 0. Thus, there exists a positive
constant d < σe(A0 + A) such that T (r, Aj) = o(edr) for j > 0, also this and
Remark 3.1 lead to

T (r, Aj) = S(r, A0 +A) + o(edr).

We assert that

N(r,
1

f
) ≤ (k − 1)N(r,

1

f
).

In fact, if z0 is a zero of f multiplicity τ(> k), then the Laurent expansion of
f(k)

f in the neighborhood of z0 is

f (k)

f
=
τ(τ − 1) · · · (τ − k + 1)

(z − z0)k
+ · · · .

Substituting this expression into (2.5) yields a contradiction. Therefore, λe(f)
= λe(f), thus (ii) and (iv) together with (1.22) give

λe(f) < σ1(B0 +B) ≤ σe(A0 +A),

and this implies that there exists a positive constant d1 < σe(A0+A) such that
N(r, 1/f) = o(ed1r). It further results in

log+N(r, 1/f) = S(r, A0 +A) + o(ed1r).

Hence, the conditions of Lemma 3.7 are satisfied. So there exists an integer
q, 1 ≤ q ≤ k, such that f(z) and f(z + q2πi) are linearly dependent. It follows
that (see [1, p. 14]) f(z) can be represented as f(z) = eβzU(z), where β is a
constant, U(z) is a periodic entire function with period q2πi, i.e., we may write

U(z) = G(ez/q) with G(ζ) analytic in 0 < |ζ| < ∞. Evidently, λe(f) = λe(U).
By Lemma 3.8, we have

λe(U) =
1

q
max{λ1(G), λ1(G

∗)},

where G∗(t) = G(1/t). Thus,

(4.1) λe(f) =
1

q
max{λ1(G), λ1(G

∗)}.

Substituting f(z) = ζβqG(ζ) into equation (2.5), and noting that ζ = ez/q,
gives

(4.2) G(k) +Dk−1(ζ)G
(k−1) + · · ·+D1(ζ)G

′ + (D0(ζ) +D(ζ))G = 0,
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where
(4.3){

D(ζ) = qk

ζk
B(ζq),

Dk−j(ζ) =
1
ζj [c

(1)
k−j + c

(2)
k−jBk−2(ζ

q) + · · ·+ c
(j)
k−jBk−j(ζ

q)], 1 ≤ j ≤ k,

c
(i)
k−j (1 ≤ i ≤ j) are constants, and for j ≥ 2, c

(j)
k−j = qj . Clearly, D(ζ) and

Dk−j(ζ) (1 ≤ j ≤ k) are analytic in 0 < |ζ| <∞, and σ1(D) = qσ1(B),

σ1(Dk−j) ≤ qmax{σ1(Bk−2), . . . , σ1(Bk−j)} < qσ1(B) = σ1(D), 1 ≤ j ≤ k,

λ1(D) = qλ1(B) < σ1(D).

Then, taking an arbitrary constant R0 > 0, there exists a positive constant
d < σ1(D) such that

T1(r,Dk−j) = o(rd) (1 ≤ j ≤ k), N1(r, 1/D) = o(rd)

in R0 < |ζ| <∞, and these lead to

T1(r,Dk−j) = S1(r,D) + o(rd) (1 ≤ j ≤ k), N1(r, 1/D) = S1(r,D) + o(rd).

For the solution G(ζ) of the equation (4.2),

λ1(G) ≤ qλe(U) = qλe(f) < qσ1(B) = σ1(D).

Hence, there exists a positive constant d1 < σ1(D) such that

N1(r, 1/G) = o(rd1)

in R0 < |ζ| <∞, and hence, from Remark 2.1, N1(r, 1/G) = S1(r,D)+ o(rd1 ).
In addition, D(ζ) is clearly transcendental in R0 < |ζ| < ∞. Therefore, the
conditions of Lemma 3.6 are satisfied, and so D(ζ) has no zeros in R0 < |ζ| <
∞. Since R0 is arbitrary, we see that D(ζ) has no zeros in 0 < |ζ| < ∞. In
view of (4.3), B(ζ) has no zeros in 0 < |ζ| <∞ yet. From (3.20) and (3.21) of
Lemma 3.9, we may get (2.6). The proof is completed. �

5. Example

To show property of the following equations, we need the following lemma.

Lemma 5.1 ([6]). Let A0, . . . , Ak−1 be entire functions such that

max{σ(A1), . . . , σ(Ak−1), λ(A0)} < σ(A0) = σ (0 < σ ≤ ∞),

and that A0 has at least one zero whose multiplicity is not a multiple of k.
Then every solution f of the equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = 0

satisfies λ(f) ≥ σ.
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Example 1. Consider the equations

(5.1) f (k) + (ez − 1) exp{ez}f = 0 (k ≥ 3),

we see the equation (5.1) satisfies all conditions of Theorem 2.2,
By Lemma 5.1, we can see that every solution of (5.1) satisfies λ(f) = ∞.
Moreover, we can know that in the equation

A(z) = B(ez) = B(ζ) = (ζ − 1)eζ,

it do not satisfy the form B(ζ) = ζmeg(ζ) in Theorem 2.1.
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