DOI QR코드

DOI QR Code

Composition Analysis and Antioxidant Activities of the Essential Oil and the Hydrosol Extracted from Rosmarinus officinalis L. and Lavandula angustifolia Mill. Produced in Jeju

제주산 로즈마리와 라벤더(Rosmarinus officinalis L., Lavandula angustifolia Mill.)로부터 추출한 essential oil과 hydrosol의 성분 분석 및 항산화 활성

  • Jeon, Deok Hyeon (Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University) ;
  • Moon, Jeong Yong (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Hyun, Ho Bong (Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University) ;
  • Kim Cho, Somi (Subtropical Horticulture Research Institute, Jeju National University)
  • Received : 2013.04.06
  • Accepted : 2013.04.30
  • Published : 2013.09.30

Abstract

Constituents of the essential oil (EO)s and hydrosol of rosemary (Rosmarinus officinalis L.) and lavender (Lavandula angustifolia Mill.) were analyzed by gas chromatography-mass spectrometry (GC-MS). The identified major constituents were ${\alpha}$-pinene (40.96%), camphor (34.44%), verbenone (45.31%), and camphor (67.04%) in rosemary EO, lavender EO, rosemary hydrosol, and lavender hydrosol, respectively. The antioxidant activity of EO and hydrosol extracted from rosemary and lavender were evaluated. Both EO showed di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) free radical scavenging activities as well as $Fe^{2+}$ ion chelating activity but no alkyl radical scavenging activity. Rosemary EO showed higher DPPH radical scavenging activity than lavender, whereas lavender EO showed higher $Fe^{2+}$ ion chelating activity. Both rosemary and lavender hydrosols showed alkyl radical scavenging activity, but only lavender hydrosol showed an activity on $Fe^{2+}$ chelating assay. Both rosemary and lavender hydrosols also protected the dermal fibroblast and the HaCaT keratinocytes against $H_2O_2$-induced cytotoxicity.

제주도에서 생산된 로즈마리(Rosmarinus officinalis L.)와 라벤더(Lavandula angustifolia Mill.) 두 종의 허브 에센셜 오일과 하이드로졸 성분을 GC-MS로 분석하였다. 로즈마리 에센셜 오일에는 ${\alpha}$-pinene (40.96%)의 함량이 가장 높았으며, 라벤더 에센셜 오일에는 camphor (34.44%)가 가장 높았다. 로즈마리 하이드로졸에는 verbenone이 (45.31%) 가장 높게 나타났으며, 라벤더 하이드로졸에서는 camphor (67.04%)로 가장 높게 나타났다. 또한 로즈마리와 라벤더 에센셜 오일과 하이드로졸의 항산화 효능을 검증해 본 결과, 두 종류의 에센셜 오일 모두 DPPH, ABTS 라디칼 소거능과, $Fe^{2+}$ ion 킬레이팅 활성을 나타냈으나, alkyl 소거능은 거의 나타나지 않았다. DPPH 라디칼 소거능은 로즈마리 에센셜 오일이 라벤더 에센셜 오일보다 우수한 반면, $Fe^{2+}$ ion 킬레이팅 실험에서는 라벤더 에센셜 오일이 로즈마리 에센셜 오일보다 더 우수했다. 로즈마리, 라벤더 하이드로졸 모두 alkyl 라디칼 소거능을 나타냈으나, 라벤더 하이드로졸만이 $Fe^{2+}$ ion 소거능을 나타냈다. 특히 $H_2O_2$에 의해 유도된 Fibroblast와 HaCaT에서의 세포독성 실험에서 하이드로졸이 에센셜 오일보다 우수한 세포사멸 억제능을 나타냈다.

Keywords

References

  1. Adel K, Zied Z, Ines BC, Ahmed B, Neji G, Mohamed D et al. (2011) Chemical constituents and antioxidant properties of Rosmarinus officinalis L. essential oil cultivated from the South-Western of Tunisia. J Med Plants Res 5, 5999-6004.
  2. Alfreda W and Takayuky S (2007) Antioxidant Activities and Volatile Constituents of Various Essential Oils. J Agric Food Chem 55, 1737-42. https://doi.org/10.1021/jf062959x
  3. Biljana B, Neda MD, Isidora S, and Emilija J (2007) Antimicrobial and Antioxidant Properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) Essential Oils. J Agric Food Chem 55, 7879-85. https://doi.org/10.1021/jf0715323
  4. Boussaada O, Ammar S, Saidana D, Chriaa J, Chraif I, Daami M et al. (2008) Chemical composition and antimicrobial activity of volatile components from capitula and aerial parts of volatile components from capitula and aerial parts of Rhaponticum acaule DC growing wild in Tunisia. Microbiol Res 163, 87-95. https://doi.org/10.1016/j.micres.2007.02.010
  5. Calabrese V, Scapagnini G, Catalano C, Bates TE, Dinotta F, Micali G at al. (2001) Induction of heat shock protein synthesis in human skin fibroblasts in response to oxidative stress: regulation by a natural antioxidant from rosemary extract. Int J Tissue React 23, 51-8.
  6. Cavin A, Hostettmann K, Dyatmyko W, and Potterat O (1998) Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med 64, 393-6. https://doi.org/10.1055/s-2006-957466
  7. Fernandez LJ, Zhi N, Aleson CL, Perez AJA, and Kur V (2005) Antioxidant and antibacterial activities of natural extracts, application in beef meat balls. Meat Sci 69, 371-80. https://doi.org/10.1016/j.meatsci.2004.08.004
  8. Hiramoto K, Johkoh H, Sako K, and Kikugawa K (1993) DNA breaking activity of the carbon-centered radical generated from 2,2-azobis (2-amidinopropane) hydrochloride (AAPH). Free Radical Res Commun 19, 323-32. https://doi.org/10.3109/10715769309056521
  9. Kadri A, Zarai Z, Chobba IB, Bekir A, Gharsallah N, Damak M et al. (2011) Chemical constituents and antioxidant properties of Rosmarinus officinalis L. essential oil cultivated from the South-Western of Tunisia. J Med Plants Res 5, 6502-8.
  10. Kim JH, Kim MJ, Choi SK, Bae SH, An SK, and Yoon YM (2011) Antioxidant and Antimicrobial Effects of Lemon and Eucalyptus Essential Oils. J Soc Cosmet Scientists Korea 37, 303-8
  11. Lee SE, Hwang HJ, Ha JS, Jeong HS, and Kim JH (2003) Screening of medicinal plant extracts for antioxidant activity. Life Sci 73, 167-79. https://doi.org/10.1016/S0024-3205(03)00259-5
  12. Lu H, Li H, Lu H, Li XL, and Zhou AG (2010) Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitisrelated bacteria. Afr J Microbiol Res 4, 309-13.
  13. Marulanda A, Porcel R, Barea JM, and Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native droughttolerant or drought-sensitive Glomus Species. Microbial Ecol 54, 543-52. https://doi.org/10.1007/s00248-007-9237-y
  14. Monica H, Oana C, Marius M, and Lucian H (2013) Neuroprotective effects of inhaled lavender oil on scopolamine-induced dementia via antioxidative activities in rats. Phytomedicine 20, 446-52. https://doi.org/10.1016/j.phymed.2012.12.005
  15. Osman C, Llknur O, Sadettin T, Sedat Y, and Hakan O (2011) Antioxidative effects of curcumin, $\beta$-myrcene and 1,8-cineole against 2,3,7,8- tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 27, 447-53. https://doi.org/10.1177/0748233710388452
  16. Oyaizu M (1986) Studies of products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44, 307-15. https://doi.org/10.5264/eiyogakuzashi.44.307
  17. Piccaglia R, Marotti M, Giovanelli E, Deans SG, and Eaglesham E (1993) Antibacterial and antioxidant properties of Mediterranean aromatic plants. Ind Crop Prod 2, 47-50. https://doi.org/10.1016/0926-6690(93)90010-7
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26, 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Reichling J, Schnitzler P, Suschke U, and Saller R (2009) Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties-an Overview. Forsch Komplementmed 16, 79.
  20. Rim YS, Park YM, Park MS, Kim KY, Kim MJ, and Choi YH (2000) Screening of antioxidants and antimicrobial activity in native plants. Korean J Med Crop Sci 8, 324-50.
  21. Ruberto G and Baratta MT (2000) Antioxidant activity of selected essential oil components in two model systems. Food Chem 69, 167-74. https://doi.org/10.1016/S0308-8146(99)00247-2
  22. Sait C and Ahmet O (2002) Effects of Intraperitoneally Administered Lipoic Acid, Vitamin E, and Linalool on the Level of Total Lipid and Fatty Acids in Guinea Pig Brain with Oxidative Stress Induced by $H_{2}O_{2}$. J Biochem Mol Biol 35, 547-52. https://doi.org/10.5483/BMBRep.2002.35.6.547
  23. Shin YH, Kim HJ, Lee JY, Cho YJ, and An BJ (2012) Major Compound Analysis and Assessment of Natural Essential Oil on Anti-Oxidative and Anti-Microbial Effects. J Life Sci 20, 1344-51. https://doi.org/10.5352/JLS.2012.22.10.1344
  24. Smith MA, Perry G, and Pryor WA (2002) Causes and consequences of oxidative stress in Alzheimer’s disease (1,2). Free Radical Biol Med 32, 1049. https://doi.org/10.1016/S0891-5849(02)00793-1
  25. Woo JH, Mok MG, Han KW, Lee SY, and Park KW (2010a) Aroma components and Antioxidant Activities of Pure Rosemary Essential Oil Goods Produced in Different Countries. Kor J Hort Sci Technol 28, 696-700.
  26. Woo JH, Mok MG, and Park KW (2010b) Aroma Component and Antioxidant Activities of Pure Lavender Essential Oil Goods in Different Produced Countries. Kor J Hort Sci Technol 28, 138-43.
  27. Yang SA, Jeon SK, Lee EJ, Shim CH, and Lee IS (2010) Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Nat Pro Lett 24, 140-51.

Cited by

  1. Antimicrobial Activity of Lavander and Rosemary Essential Oil Nanoemulsions vol.33, pp.3, 2017, https://doi.org/10.9724/kfcs.2017.33.3.256
  2. Gas Chromatography-mass Spectrometry와 Headspace-Gas Chromatography-mass Spectrometry를 이용한 제주산 민트 에센셜오일 성분 분석 vol.58, pp.2, 2015, https://doi.org/10.3839/jabc.2015.028
  3. 제주산 로즈마리 에센셜 오일의 항염 및 피부 상재균에 대한 항균 활성 vol.35, pp.3, 2013, https://doi.org/10.12925/jkocs.2018.35.3.744
  4. Effect of lavender hydrosol on antioxidant activity and growth in Nicotiana benthamiana vol.42, pp.1, 2013, https://doi.org/10.1007/s40415-019-00518-1
  5. GC/MS chemical analysis of lavandin (Lavandula x intermedia) hydrolat: Successive extraction fractions vol.40, pp.None, 2013, https://doi.org/10.5937/leksir2040033p
  6. Headspace/GC-MS Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller vol.10, pp.8, 2013, https://doi.org/10.3390/foods10081768