DOI QR코드

DOI QR Code

The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant

나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향

  • Lee, Jae-In (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Kim, Tae-Young (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Cho, Hye-Won (Department of Prosthodontics, College of Dentistry, Wonkwang University)
  • 이재인 (원광대학교 치과대학 치과보철학교실) ;
  • 김태영 (원광대학교 치과대학 치과보철학교실) ;
  • 조혜원 (원광대학교 치과대학 치과보철학교실)
  • Received : 2013.05.18
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

A passively fitting prosthesis is an essential prerequisite to attain long-lasting success and maintenance of osseointegration. However, true "passive fit" can not be achieved with the present implant-supported prosthesis fabrication protocol. Many clinical situations are suitably treated with cantilevered implant-supported fixed restorations. The purpose of this study was to compare the stress distribution pattern and magnitude in supporting tissues around ITI implants with cantilevered, implant-supported, screw-retained fixed prosthesis according to the fitness of superstructures. Photoelastic model was made with PL-2 resin (Measurements, Raleigh, USA) and three ITI implants (${\phi}4.1{\times}10mm$) were placed in the mandibular posterior edentulous area distal to the canine. Anterior and posterior extended 4-unit cantilevered FPDs were made with different misfit in the superstructures. 4 types of prosthesis were made by placing a $100{\mu}m$ gap between the abutment and the crown on the second premolar and/or the first molar. Photoelastic stress analysis were carried out to measure the fringe order around the implant supporting structure under simulated loading conditions (30 lb).

임플란트의 장기적인 성공을 위해 고정체의 형태, 외과적 술식, 골조직의 조건, 보철물 적합성, 주기적인 검사, 환자의 구강 위생 등에 많은 주의가 필요하다. 많은 연구에서 임플란트 지지 보철물의 적합도에 따른 임플란트의 예후에 관해 보고되었다. 보철물이 수동 적합되어야 임플란트의 상부구조및 하부구조에 해로운 응력을 야기하지 않는다고 보고되고 있으나 현재의 임플란트 보철물의 제작과정으로 진정한 수동 적합을 얻는 수 없다고 인정된다. 임상과정과 기공과정을 포함하여 임플란트 치료의 전 과정에서 오차가 발생하며, 이는 보철물을 변형을 야기하고 이는 임플란트 상부 보철물과 지대주 사이의 오차를 발생시킨다. 이러한 오차는 보철물 장착 후 보철물의 파절, 나사의 헐거움(screw loosening), 골소실, 골유착 실패와 같은 문제를 야기한다. 이런 오차에 의한 문제점은 cantilever의 존재, 과도한 교합력이 존재할 경우 더욱 증가된다고 보고되고 있다. 본 연구에서는 ITI 임플란트를 하악골의 견치후방의 무치악부에 3개를 식립하고 4-unit 캔틸레버 고정성 국소의치를 다양한 위치의 $100{\mu}m$ gap을 생성한 후 제작하고 gap을 생성하지 않은 고정성 국소의치와 30 lb의 하중하에서 광탄성 응력분석을 시행하여 응력분포 양상과상대적인 응력의 크기를 비교분석하였다.

Keywords

References

  1. Brunski JB. Biomaterials and biomechanics in dental implant design. Int J Oral and Maxillofac Implants 1988;3:85-97.
  2. Lekholm U, van Steenberghe D, Herrmann I, et al. Osseointegrated implants in the treatment of partially edentulous jaws. A prospective 5-year multicenter study. Int J Oral Maxillofac Implants 1994;9:627-635.
  3. Buser D, Mericske-Stern R, Bernard JP, et al. Long term evaluation of non submerged ITI implants. Part 1: 8-year life table analysis of a prospective multicenter study with 2359 implants. Clin Oral Implant Res 1997;8:161-172. https://doi.org/10.1034/j.1600-0501.1997.080302.x
  4. Tolman DE, Laney WR. Tissue-integrated prosthteses complication. Int J Oral Maxillofac Implants 1992;7:477-484.
  5. Sones AD. Complication with osseointegrated implants. J Prosthet Dent 1989;62:581-585. https://doi.org/10.1016/0022-3913(89)90084-X
  6. Kallus T, Bessing C. Loose gold screws frequently occur in full-arch fixed prostheses supported by osseointegrated implants after 5 years. Int J Oral Maxillofac Implants 1994;9:169-178.
  7. Assif D, Marshak B, Schmidt A. Accuracy of implant impression techniques. Int J Oral Maxillofac Implants 19996;11:216-222.
  8. Michalakis KX, Hirayama H, Garefis PD. Cement-retained versus screw-retained implant restorations: a critical review. Int J Oral Maxillofac Implants. 2003;18:719-28.
  9. Heckmann SM, Kari M, Wichmann MG, et al. Cement fixation and screw retention: parameters of passive fit. An in vitro study of three-unit implantsupported fixed partial dentures. Clin Oral Implants Res 2004;15:466-473. https://doi.org/10.1111/j.1600-0501.2004.01027.x
  10. Mcglumphy EA, Campagni WW, Peterson LJ. A comparison of the stress transfer characteristics of a dental implant with a rigid or a resilient internal element. J Prosthet Dent 1989;62:586-593. https://doi.org/10.1016/0022-3913(89)90085-1
  11. Stegaroiu R. Sato T, Kusakari H, Miyakawa P. Influence of restoration type on stress distribution in bone around implants: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants 1998;13:82-90.
  12. Landry KE, Johnson PF, Parks VJ, et al. A photoelastic study to determine the location of the nonrigid connector in a five-unit intermediate abutment prosthesis. J Prosthet Dent 1987;57:454-457. https://doi.org/10.1016/0022-3913(87)90014-X
  13. Wee AG, Aquilino SA, Schneider RL. Strategies to achieve fit in implant prosthodontics: A Review of the literature. Int J Prosthodontics 1999;12:167-178.
  14. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual check up. Int J Oral Maxillofac Implants 1991;6:270-276.
  15. Jemt T, Book K. Proshthesis misfit and marginal bone loss in osseointegrated implant patients. Int J Oral Maxillofac Implants 1996;11:620-625.
  16. Kunavisarut C. Lang LA. Stoner BR, et al. Finite element analysis on dental implant supported prostheses without passive fit. J Proshodont 2002;11:30-40.
  17. Guichet DL, Caputo AA, Choi HJ, et al. Passivity of fit and marginal opening in screw- or cement-retained implant fixed partial denture designs. Int J Oral Maxillofac Implants 2000;15:239-246.