Abstract
Material flow control (MFC) is a kind of operational policy to control of the movement of raw materials, components, and products through the manufacturing lines. It is very important because it varies throughput, line cycle time, and work-in-process (WIP) under the same manufacturing environments. MFC can be largely categorized into three types such as Push, Pull, and Hybrid. In this paper, we set various manufacturing environments to compare five existing MFC mechanisms: Push, Pull, and Hybrid (CONWIP, Gated MaxWIP, Critical WIP Loops, etc). Three manufacturing environments, manufacturing policies (make to stock and make to order), demand (low, medium, high), and line balancing (balanced, unbalanced, and highly unbalanced) are considered. The MFCs are compared in the point of the five functional efficiencies and the proposed compounded efficiency. The simulation results shows that the Push is superior in the functional efficiency and GMWIP is superior in the compounded efficiency.