DOI QR코드

DOI QR Code

Photosynthetic carbon fixation by tropical coral reef phytoplankton assemblages: a UVR perspective

  • Li, Gang (State Key Laboratory of Marine Environmental Science, Xiamen University) ;
  • Che, Zhiwei (Sanya Marine Environment Monitoring Station, SOA) ;
  • Gao, Kunshan (State Key Laboratory of Marine Environmental Science, Xiamen University)
  • Received : 2013.05.01
  • Accepted : 2013.08.05
  • Published : 2013.09.15

Abstract

Photosynthetic carbon fixation regulates air-sea $CO_2$ fluxes in the waters of coral reefs. However, little has been documented on the effects of solar UV radiation (UVR, 280-400 nm) upon photosynthetic behaviors of phytoplankton dwelling in these ecosystems. In order to evaluate the aforesaid, surface dwelling tropical coral reef phytoplankton assemblages collected from the South China Sea were exposed to solar radiation (i.e., photosynthetically active radiation [PAR] + UV radiation A [UVA] + UV radiation B [UVB], 280-700 nm; PAR + UVA, 320-700 nm; and PAR, 400-700 nm) under static or simulated-mixing conditions. Under the static condition, UVA and UVB significantly reduced the carbon fixation with the maximum of 22.4 and 15.3%, respectively; while lower UVR-related photosynthetic inhibition was observed in case of phytoplankton samples being subjected to mixing. At a moderate level of mixing (i.e., circulation time 80 min), the UVA and UVB caused inhibition were lowered by 52.1 and 79.6%, respectively. Based on this it could be stated that vertical mixing induced by winds and/or tides in the natural environments could reduce the inhibitory effect of solar UVR on phytoplankton productivity in the coral reefs water.

Keywords

References

  1. Banaszak, A. T. & Lesser, M. P. 2009. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8:1276-1294. https://doi.org/10.1039/b902763g
  2. Barbieri, E. S., Villafane, V. E. & Helbling, E. W. 2002. Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes. Limnol. Oceanogr. 47:1648-1655. https://doi.org/10.4319/lo.2002.47.6.1648
  3. Bouchard, J. N., Campbell, D. A. & Roy, S. 2005. Effects of UV-B radiation on the D1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina). J. Phycol. 41:273-286. https://doi.org/10.1111/j.1529-8817.2005.04126.x
  4. Buma, A. G. J., Boelen, P. & Jeffrey, W. H. 2003. UVR-induced DNA damage in aquatic organisms. In Helbling, E. W. & Zagarese, H. E. (Eds.) UV Effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Cambridge, pp. 291-327.
  5. Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. 2010. Ocean warming slows coral growth in the central Red Sea. Science 329:322-325. https://doi.org/10.1126/science.1190182
  6. Cullen, J. J. & Lesser, M. P. 1991. Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate: results for a marine diatom. Mar. Biol. 111:183-190. https://doi.org/10.1007/BF01319699
  7. Dong, Z. -J., Huang, H., Huang, L. M. & Li, Y. -C. 2009. Diversity of symbiotic algae of the genus Symbiodinium in scleractinian corals of the Xisha Islands in the South China Sea. J. Syst. Evol. 47:321-326. https://doi.org/10.1111/j.1759-6831.2009.00034.x
  8. Dunne, R. P. & Brown, B. E. 1996. Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs: results from the central Indian Ocean and Andaman Sea. Mar. Ecol. Prog. Ser. 144:109-118. https://doi.org/10.3354/meps144109
  9. Furnas, M., Mitchell, A., Skuza, M. & Brodie, J. 2005. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51:253-265. https://doi.org/10.1016/j.marpolbul.2004.11.010
  10. Gao, K., Ruan, Z., Villafane, V. E., Gattuso, J. -P. & Helbling, E. W. 2009. Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 54:1855-1862. https://doi.org/10.4319/lo.2009.54.6.1855
  11. Gao, K., Wu, Y., Li, G., Wu, H., Villafane, V. E. & Helbling, E. W. 2007. Solar UV-radiation drives $CO_2$-fixation in marine phytoplankton: a double-edged sword. Plant Physiol. 144:54-59. https://doi.org/10.1104/pp.107.098491
  12. Gardner, J. P. A., Garton, D. W. & Collen, J. D. 2011. Near-surface mixing and pronounced deep-water stratification in a compartmentalised, human-disturbed atoll lagoon system. Coral Reefs 30:271-282. https://doi.org/10.1007/s00338-010-0701-7
  13. Guan, W. & Gao, K. 2008. Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom, Skeletonema costatum. J. Photochem. Photobiol. B Biol. 91:151-156. https://doi.org/10.1016/j.jphotobiol.2008.03.004
  14. Hader, D. P., Lebert, M., Marangoni, R. & Colombetti, G. 1999. ELDONET: European Light Dosimeter Network hardware and software. J. Photochem. Photobiol. B Biol. 52:51-58. https://doi.org/10.1016/S1011-1344(99)00102-5
  15. Helbling, E. W., Gao, K., Goncalves, R. J., Wu, H. & Villafane, V. E. 2003. Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing. Mar. Ecol. Prog. Ser. 259:59-66. https://doi.org/10.3354/meps259059
  16. Helbling, E. W., Villafane, V., Ferrario, M. & Holm-Hansen, O. 1992. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar. Ecol. Prog. Ser. 80:89-100. https://doi.org/10.3354/meps080089
  17. Hernando, M., Schloss, I., Roy, S. & Ferreyra, G. 2006. Photoacclimation to long-term ultraviolet radiation exposure of natural sub-Antarctic phytoplankton communities: Fixed surface incubations versus mixed mesocosms. Photochem. Photobiol. 82:923-935. https://doi.org/10.1562/2005-08-29-RA-662
  18. Holm-Hansen, O. & Helbling, E. W. 1995. Tecnicas para la medicion de la productividad primaria en el fitoplancton. In Alveal, K., Ferrario, M. E., Oliveira, E. C. & Sar, E. (Eds.) Manual de Metodos Ficologicos. Universidad de Concepcion, Concepcion, pp. 329-350.
  19. Huang, H., Dong, Z., Huang, L., Yang, J., Di, B., Li, Y., Zhou, G. & Zhang, C. 2011. Latitudinal variation in algal symbionts within the scleractinian coral Galaxea fascicularis in the South China Sea. Mar. Biol. Res. 7:208-211. https://doi.org/10.1080/17451000.2010.489616
  20. Hughes, T. P., Huang, H. & Young, M. A. L. 2012. The wicked problem of China's disappearing coral reefs. Conserv. Biol. 27:261-269.
  21. Kuwahara, V. S., Nakajima, R., Othman, B. H. R., Kushairi, M. R. M. & Toda, T. 2010. Spatial variability of UVR attenuation and bio-optical factors in shallow coral-reef waters of Malaysia. Coral Reefs 29:693-704. https://doi.org/10.1007/s00338-010-0618-1
  22. Lesser, M. P. 2004. Experimental biology of coral reef ecosystems. J. Exp. Mar. Biol. Ecol. 300:217-252. https://doi.org/10.1016/j.jembe.2003.12.027
  23. Li, G. & Gao, K. 2013. Cell size-dependent effects of solar UV radiation on primary production in coastal waters of the South China Sea. Estuar. Coasts 36:728-736. https://doi.org/10.1007/s12237-013-9591-6
  24. Li, G., Gao, K. & Gao, G. 2011. Differential impacts of solar UV radiation on photosynthetic carbon fixation from the coastal to offshore surface waters in the South China Sea. Photochem. Photobiol. 87:329-334. https://doi.org/10.1111/j.1751-1097.2010.00862.x
  25. Li, G., Huang, L., Liu, H., Ke, Z., Lin, Q., Ni, G., Yin, J., Li, K., Song, X., Shen, P. & Tan, Y. 2012. Latitudinal variability $(6^{\circ} S-20^ {\circ} N) $of early summer phytoplankton species compositions and size-fractioned productivity from Java Sea to South China Sea. Mar. Biol. Res. 8:163 -171. https://doi.org/10.1080/17451000.2011.615323
  26. Li, Y., Huang, H., Dong, Z., Lian, J. & Zhou, G. 2008. Headway of study on coral reefs ecological restoration. Acta Ecol. Sin. 28:5048-5054 (in Chinese).
  27. Mengelt, C. & Prezelin, B. B. 2005. UVA enhancement of carbon fixation and resilience to UV inhibition in the genus Pseudo-nitzschia may provide a competitive advantage in high UV surface waters. Mar. Ecol. Prog. Ser. 301:81-93. https://doi.org/10.3354/meps301081
  28. Milligan, A. J., Aparicio, U. A. & Behrenfeld, M. J. 2012. Fluorescence and nonphotochemical quenching responses to simulated vertical mixing in the marine diatom Thalassiosira weissflogii. Mar. Ecol. Prog. Ser. 448:67-78. https://doi.org/10.3354/meps09544
  29. Neale, P. J., Davis, R. F. & Cullen, J. J. 1998. Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585-589. https://doi.org/10.1038/33374
  30. Porra, R. J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 73:149-156. https://doi.org/10.1023/A:1020470224740
  31. Roy, S., Mohovic, B., Gianesella, S. M., Schloss, I., Ferrario, M. & Demers, S. 2006. Effects of enhanced UV-B on pigment-based phytoplankton biomass and composition of mesocosm-enclosed natural marine communities from three latitudes. Photochem. Photobiol. 82:909-922. https://doi.org/10.1562/2005-09-03-RA-674
  32. Shen, P. P., Tan, Y. H., Huang, L. M., Zhang J. L. & Yin, J. Q. 2010. Occurrence of brackish water phytoplankton species at a closed coral reef in Nansha Islands, South China Sea. Mar. Pollut. Bull. 60:1718-1725. https://doi.org/10.1016/j.marpolbul.2010.06.028
  33. Stone, R. P. 2006. Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions. Coral Reefs 25:229-238. https://doi.org/10.1007/s00338-006-0091-z
  34. Sun, D. R., Lin, Z. J. & Qiu, Y. S. 2005. Survey of coral reef fish resources of the Xisha Islands. Period. Ocean Univ. China 35:225-231 (in Chinese).
  35. van Woesik, R. & Jordan-Garza, A. G. 2011. Coral populations in a rapidly changing environment. J. Exp. Mar. Biol. Ecol. 408:11-20. https://doi.org/10.1016/j.jembe.2011.07.022
  36. Wu, Y., Gao, K., Li, G. & Helbling, E. W. 2010. Seasonal impacts of solar UV radiation on the photosynthesis of phytoplankton assemblages in the coastal water of the South China Sea. Photochem. Photobiol. 86:586-592. https://doi.org/10.1111/j.1751-1097.2009.00694.x
  37. Zepp, R. G., Erickson, D. J. 3rd, Paul, N. D. & Sulzberger, B. 2011. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem. Photobiol. Sci. 10:261-279. https://doi.org/10.1039/c0pp90037k
  38. Zhang, C. -X., Sun, X. -L., Xie, W. -L., Xie, S. -Y., Zhan, D. -L., Zhang, Y. -B., Zhang, J. -B. & Chen, C. -L. 2009. Seasonal changes of the phytoplankton in Xuwen coral reef area. Oceanol. Limnol. Sin. 40:159-165 (in Chinese).

Cited by

  1. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors vol.14, pp.1, 2015, https://doi.org/10.1039/C4PP90035A
  2. Incident Ultraviolet Irradiances Influence Physiology, Development and Settlement of Larva in the Coral Pocillopora damicornis vol.92, pp.2, 2016, https://doi.org/10.1111/php.12567
  3. Interactive effects of nutrient supply and other environmental factors on the sensitivity of marine primary producers to ultraviolet radiation: implications for the impacts of global change vol.22, 2014, https://doi.org/10.3354/ab00582
  4. Effects of ultraviolet radiation on marine primary production with reference to satellite remote sensing vol.9, pp.2, 2015, https://doi.org/10.1007/s11707-014-0477-0
  5. Acclimation to low ultraviolet‐B radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium Nostoc sphaeroides vol.22, pp.1, 2013, https://doi.org/10.1111/1462-2920.14836