DOI QR코드

DOI QR Code

Recent Developments in Magnetic Measurements: from Technical Method to Physical Knowledge

  • Basso, V. (Istituto Nazionale di Ricerca Metrologica - INRIM) ;
  • Fiorillo, F. (Istituto Nazionale di Ricerca Metrologica - INRIM) ;
  • Beatrice, C. (Istituto Nazionale di Ricerca Metrologica - INRIM) ;
  • Caprile, A. (Istituto Nazionale di Ricerca Metrologica - INRIM) ;
  • Kuepferling, M. (Istituto Nazionale di Ricerca Metrologica - INRIM) ;
  • Magni, A. (Istituto Nazionale di Ricerca Metrologica - INRIM) ;
  • Sasso, C.P. (Istituto Nazionale di Ricerca Metrologica - INRIM)
  • 투고 : 2012.06.01
  • 심사 : 2012.11.16
  • 발행 : 2013.09.30

초록

We present a few significant advances in methods and concepts of magnetic measurements, aimed both at providing novel routes in the characterization of hard and soft magnetic materials and at improving our basic knowledge of the magnetization process. We discuss, in particular, investigation methods and experimental arrangements that have been developed in recent times for: 1) Hysteresis loop determination in extra-hard magnets by means of Pulsed Field Magnetometry; 2) Broadband observation of domain wall dynamics by highspeed stroboscopical Kerr techniques; 3) Entropy measurements in magnetocaloric materials by calorimetry in magnetic field. While pertaining to somewhat independent fields of investigation, all these measuring techniques have in common a solid approach to the underlying physical phenomenology and have a potential for further developments.

키워드

참고문헌

  1. IEC Standard Publication 60404-5, Permanent Magnet (magnetically hard) Materials-Methods of Measurement of Magnetic Properties, Geneva: IEC Central Office, 1993.
  2. ASTM Publication A977/A977M-02, Standard test methods for magnetic properties of high-coercivity permanent magnet materials using hysteresigraphs, West Conshohocken, PA: ASTM International, 2002.
  3. D. Chumakov, J. McCord, R. Schafer, L. Schultz, H. Vinzelberg, R. Kaltofen, and I. Monch, Phys. Rev. B 71, 014410 (2005). https://doi.org/10.1103/PhysRevB.71.014410
  4. A. Neudert, J. McCord, D. Chumakov, R. Schafer, and L. Schultz, Phys. Rev. B 71, 134405 (2005). https://doi.org/10.1103/PhysRevB.71.134405
  5. A. Magni, C. Beatrice, O. Bottauscio, A. Caprile, E. Ferrara, and F. Fiorillo, IEEE Trans. Magn. 48 (2012), in press.
  6. V. K. Pecharsky and K. A. Gschneidner, Jr., J. Appl. Phys. 86, 565 (1999). https://doi.org/10.1063/1.370767
  7. K. P. Skokov, V. V. Khovaylo, K. H. Muller, J. D. Moore, J. Liu, and O. Gutfleisch, J. Appl. Phys. 111, 07A910 (2012). https://doi.org/10.1063/1.3670987
  8. V. Basso, M. Kuepferling, C. P. Sasso, and L. Giudici, Rev. Sci. Instrum. 79, 063907 (2008). https://doi.org/10.1063/1.2940218
  9. D. Dufeu and P. Lethuillier, Rev. Sci. Instr. 70, 3035 (1999). https://doi.org/10.1063/1.1149865
  10. R. Cornelius, J. Dudding, R. Grossinger, B. Enzberg-Mahlke, W. Fernengel, M. P. Knell, M. Kupferling, M. Taraba, J. C. Toussaint, A. Wimmer, and D. Edwards, IEEE Trans. Magn. 38, 2462 (2002). https://doi.org/10.1109/TMAG.2002.803600
  11. P. Bretchko and R. Ludwig, IEEE Trans. Magn. 36, 2042 (2000). https://doi.org/10.1109/20.875324
  12. F. Fiorillo, Measurement and Characterization of Magnetic Materials, Elsevier-Academic Press, Amsterdam (2004) p. 123.
  13. F. Fiorillo, C. Beatrice, O. Bottauscio, and E. Patroi, IEEE Trans. Magn. 43, 3159 (2007). https://doi.org/10.1109/TMAG.2007.893536
  14. A. Hubert and R. Schaefer, Magnetic Domains Springer-Verlag, 2000.
  15. W. Rave, R. Schaefer, and A. Hubert, J. Magn. Magn. Mater. 65, 7 (1987). https://doi.org/10.1016/0304-8853(87)90304-0
  16. R. Schaefer, J. Magn. Magn. Mater. 148, 226 (1995). https://doi.org/10.1016/0304-8853(95)00218-9
  17. U. Hillebrecht, Science 284, 2099 (1999). https://doi.org/10.1126/science.284.5423.2099
  18. W. K. Hiebert, A. Stankiewicz, and M. R. Freeman Phys. Rev. Lett. 79, 1134 (1997). https://doi.org/10.1103/PhysRevLett.79.1134
  19. M. Bauer, J. Fassbender, B. Hillebrands, and R. L. Stamps, Phys. Rev. B 61, 3410 (2000). https://doi.org/10.1103/PhysRevB.61.3410
  20. G. Bertotti, I. D. Mayergoyz, C. Serpico, and M. d'Aquino, IEEE Trans. Magn. 39, 2501 (2003). https://doi.org/10.1109/TMAG.2003.816453
  21. D. D. Stancil, Spin Waves: Theory and Applications, Springer-Verlag, New York (2009).
  22. Spin Dynamics in Confined Magnetic Structures, B. Hillebrands and K. Ounadjela, eds., Springer, New York (2002).
  23. K. Sekiguchi, K. Yamada, S. Seo, K. Lee, D. Chiba, K. Kobayashi, and T. Ono, Phys. Rev. Lett. 108, 017203 (2012). https://doi.org/10.1103/PhysRevLett.108.017203
  24. R. Schaefer, in Handbook of Magnetism and Advanced Magnetic Materials, Vol. 3, H. Kronmuller and S. Parkin, eds. Wiley, Chichester (UK) (2007).
  25. P. S. Keatley, V. V. Kruglyak, P. Gangmei, and R. J. Phil, Trans. R. Soc. A 369, 3115 (2011). https://doi.org/10.1098/rsta.2010.0324
  26. M. R. Freeman and W. K. Hiebert, in Spin Dynamics in Confined Magnetic Structures, B. Hillebrands and K. Ounadjela, eds., Springer, New York (2002).
  27. A. Serga, A. Chumak, and B. Hillebrands, J. Phys. D 43, 264002 (2010). https://doi.org/10.1088/0022-3727/43/26/264002
  28. C. Nistor, G. S. D. Beach, and J. L. Erskine, Rev. Sci. Instrum. 77, 103901 (2006). https://doi.org/10.1063/1.2356856
  29. U. Queitsch, J. McCord, A. Neudert, R. Schaefer, L. Schultz, K. Rott, and H. Bruckl, J. Appl. Phys. 100, 093911 (2006). https://doi.org/10.1063/1.2365382
  30. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320, 349 (2008). https://doi.org/10.1126/science.1154798
  31. A. Greilich, A. Shabaev, D. R. Yakovlev, Al. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer, Science 317, 1896 (2007). https://doi.org/10.1126/science.1146850
  32. B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fahnle, T. Roth, M. Cinchetti, and M. Aeschlimann, Nature Materials 9, 259 (2010). https://doi.org/10.1038/nmat2593
  33. K. Carva, M. Battiato, and P. M. Oppeneer, Nature Physics 7, 665 (2011).
  34. A. Magni, F. Fiorillo, A. Caprile, E. Ferrara, and L. Martino, J. Appl. Phys. 109, 07A322 (2011). https://doi.org/10.1063/1.3556937
  35. S. Fahler, U. K. Roessler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Mueller, E. Quandt, and K. Albe, Adv. Eng. Mater. 14, 10 (2012). https://doi.org/10.1002/adem.201100178
  36. A. M. Tishin and Y. I. Spichkin, The magnetocaloric effect and its applications, IOP Publishing, Bristol (2003).
  37. K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04
  38. E. Bruck, O. Tegus, D. T. Cam Thanh, Nguyen T. Trung, and K. H. J. Buschow, Int. J. Refrigeration 31, 763 (2008). https://doi.org/10.1016/j.ijrefrig.2007.11.013
  39. B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, and Z. H. Cheng, Adv. Mater. 21, 4545 (2009). https://doi.org/10.1002/adma.200901072
  40. V. K. Pecharsky and K. A. Gschneidner, Jr, J. Appl. Phys. 86, 565 (1999). https://doi.org/10.1063/1.370767
  41. V. Basso, M. Kuepferling, C. P. Sasso, and L. Giudici, Rev. Sci. Instrum. 79, 063907 (2008). https://doi.org/10.1063/1.2940218
  42. K. P. Skokov, V. V. Khovaylo, K.-H. Muller, J. D. Moore, J. Liu, and O. Gutfleisch, J. Appl. Phys. 111, 07A910 (2012). https://doi.org/10.1063/1.3670987
  43. T. Plackowski, Y. Wang, and A. Junod, Rev. Sci. Instrum. 73, 2755 (2002). https://doi.org/10.1063/1.1480452
  44. J. Marcos, F. Casanova, X. Batlle, A. Labarta, A. Planes, and L. Manosa, Rev. Sci. Instrum. 74, 4768 (2003). https://doi.org/10.1063/1.1614857
  45. S. Jeppesen, S. Linderoth, N. Pryds, L. Theil Kuhn, and J. Buch Jensen, Rev. Sci. Instrum. 79, 083901 (2008). https://doi.org/10.1063/1.2957611
  46. V. Basso, C. P. Sasso, and M. Kuepferling, Rev. Sci. Instrum. 81, 113904 (2010). https://doi.org/10.1063/1.3499253
  47. A. A. Minakov, S. B. Roy, Y. V. Bugoslavsky, and L. F. Cohen, Rev. Sci. Instrum. 76, 043906 (2005). https://doi.org/10.1063/1.1889432
  48. A. F. Lopeandia, E. Andre, J.-L. Garden, D. Givord, and O. Bourgeois, Rev. Sci. Instrum. 81, 053901 (2010). https://doi.org/10.1063/1.3422247
  49. V. Basso, C. P. Sasso, M. Kuepferling, K. P. Skokov, and O. Gutfleisch, J. Appl. Phys. 109, 083910 (2011). https://doi.org/10.1063/1.3567925
  50. K. Morrison, K. G. Sandeman, L. F. Cohen, C. P. Sasso, V. Basso, A. Barcza, M. Katter, J. D. Moore, K. P. Skokov, and O. Gutfleisch, Int. J. Refrigeration (2012), in press.
  51. M. LoBue, V. Loyau, F. Mazaleyrat, A. Pasko, V. Basso, M. Kuepferling, and C. P. Sasso, J. Appl. Phys. 111, 07A905 (2012). https://doi.org/10.1063/1.3670062