
J. Appl. Math. & Informatics Vol. 31(2013), No. 5 - 6, pp. 907 - 912
http://dx.doi.org/10.14317/jami.2013.907

OPTIMAL POLICY NETWORKS

JONG SEUL LIM

Abstract. This paper focuses on the situation of optimizing the total
cost with m given messages and n network nodes. Associated with each
network node, a fixed cost is incurred to the receiver if at least one message

is received. The mean and variance of the total costs are obtained. Normal
approximation is used. Empirical results showed that the derived method
reduces research work substantially.
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1. Introduction

Suppose that we have the communication links which consists m messages and
n possible network nodes, where a message may be selected and transmitted at
any one, but not more than one, of the network nodes. Associated with each
node, there is a fixed cost if at least one message is transmitted through a node.
Then it is worthwhile to challenge the problem on how to select that messages
and network nodes so that the sum of the benefits generated by the messages
transmitted is maximizes, subject to a constraint on the total network cost.

Consider the sets of all feasible solutions associated with exactly n nodes in the
network. Determine the upper and lower bounds for the number of the nodes and
the corresponding sets where optimum solutions are likely to be found in certain
statistical sense. Then apply exhaustive search, random sampling, or heuristics
to obtain the best solutions in those sets. The following is the mathematical
formulation of the problem.

Let i = 1, 2, ...,m, denote the messages; and j = 1, 2, ..., n the network nodes.
Define

xij =

{
1, if ith message is received from jth network node,

0, if otherwise; and
(1)
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yj = Minimum {
m∑
i=1

xij , 1}, i = 1, ...,m, j = 1, 2, ..., n. (2)

In other words, yj = 1, if at least one message is received from the jth network
node, otherwise yj = 0. Let pij be the expense of one unit of the ith message
received by the jth network node; and cj , the fixed cost to be receiver, if at least
one message is bought from the jth network node; Then the problem of optimum
network cost incurred may be written as;

Minimize C =
m∑
i=1

m∑
j=1

pijxij +
n∑

j=1

cjyj , (3)

Subject to
n∑

j=1

xij , xij ≤ yj , (4)

where xij , yj = 0, 1, for all i = 1, ...,m, and j = 1, ..., n. A feasible solution
to the problem may be represented by a vector s = (xij , yj , i = 1, ...,m, and
j = 1, ..., n). However, those for which (2) does not hold need not be considered.
Thus we may define the set of all feasible solutions as

S = The space of all s = (xij , yj , i = 1, ...,m, and j = 1, ..., n) (5)

which satisfy (1) and (2). The problem is similar to those of optimum location
selections [1, 2, 3, 5]. For any k = 1, ..., n, and any subset Jk of k elements out
of set {1, 2, ..., n}, define

S(k) =

{
All s ε S :

j=1∑
n

yj = k

}
and (6)

S(Jk) = {All s ε S : yj = 1 if and only if j ε Jk} .
In other words, S(k) represents all the possible ways of receiving the

messages from exactly k network nodes, and S(Jk) , from k given net-
work nodes. The numbers of feasible solutions in S, S(k), and S(Jk) are
respectively nm, Nk and A(k,m), which are given by [4] as

A(k,m) =
k∑

i=0

(−1)i
(
k

i

)
(k − i)m, and Nk =

(
n

k

)
A(k,m). (7)

These numbers are quite large, even for moderately sized m and n. Con-
sequently, to locate the optimum solution is often a difficult problem.
However, for the some reason we believe statistical type of search can
be fruitful. The following are the results of a type of search procedure
which may be of practical interest and worthy of further investigation.
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2. The Conditional Mean and The Variance

The following are a Lemma 2.1, the derivation of the conditional
mean.

Lemma 2.1.

A(k,m− 1) +A(k − 1,m− 1) = (1/k)A(k,m)

From (3) and (5), for any solution s in S, denote the corresponding total cost
by

C(s) =
m∑
i=1

n∑
j=1

pijxij(s) +
n∑

j=1

cjyj(s)

µk =
1

(nk )A(k,m)

∑
Jk

∑
sεS(Jk)

 m∑
i=1

n∑
j=1

pijxij(s) +
n∑

j=1

cjyj(s)

 (8)

∑
Jk

∑
sεS(Jk)

∑
i

∑
j

pijxij(s) =
∑
Jk

∑
sεS(Jk)

∑
i

∑
jεJk

pijxij(s)

=
∑
Jk

∑
jεJk

∑
sεS(Jk)

∑
i

pij xij (s) (9)

For given i1 and j in a given Jk,

S(Jk) = {sεS(Jk) and xi1j = 0 }
∪

{sεS(Jk), xi1j = 1, xij = 0, i ̸= i1}

∪
i2 ̸=i1

{sεS(Jk), xij = 1, i = i1, i2; xij = 0, i ̸= i1, i2}

∪
i2,i3 ̸=i1

{sεS(Jk), xij = 1, i = i1, i2, i3;xij = 0, otherwise}
∪

· · ·

Except for the first subset, the total number of elements in the second, third,
· · · subsets are:

A (k − 1,m− 1) + (m−1
1 )A(k − 1,m− 2) + (m−1

2 )A(k − 1,m− 3) + · · · =

A(k−1,m−1) +

m−k∑
i=1

(m−1
i )A(k−1,m−1− i) = A(k−1,m−1) + A(k,m−1).

Therefore, (9) is equivalent to∑
Jk

∑
jεJk

{A(k − 1,m− 1) + A(k,m− 1)}
m∑
i=1

pij

= {A(k − 1,m− 1) +A(k,m− 1)}
∑
Jk

∑
jεJk

m∑
i=1

pij
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= {A(k − 1,m− 1) + A(k,m− 1)} (n−1
k−1)

m∑
i=1

n∑
j=1

pij . (10)

Similarly, one obtains∑
Jk

∑
sεS(Jk)

∑
j

cj yj(s) =
∑
Jk

∑
sεS(Jk) (

∑
jεJk

cj)

=
∑
Jk

∑
sεS(Jk)

∑
j

cjyj(s) =
∑

sεS(Jk)(
∑
JεJk

cj)

= A(k,m)
∑
Jk

(
∑
jεJk

cj) = A(k,m) (n−1
k−1)

n∑
j=1

cj . (11)

From (8), (10), and (11), we have

µk =
(n−1
k−1) {A(k − 1,m− 1) +A(k,m− 1)}

(nk )A(k,m)

m∑
i=1

n∑
j=1

pij +
(n−1
k−1)A(k,m))

(nk )A(k,m)

n∑
j=1

cj

By the Lemma 2.1, we obtain the conditional mean µk as

µk = mp + kc , and (12)

On the other hand, we can find variance σ2
k as

σ2
k = (1 − rkm)

m∑
i=1

Vi + (rkm − 1/n)VJ + 2 (1 −k/n) VJF | k (1 −k/n) VF (13)

where pi. =
∑j=1

n pij , pij =
∑i=1

m pij , p =
∑j=1

n p.j/n,

pi. pi. /n, p = p./m , c =

j=1∑
n

cj/n , rkm = A(k,m− 1) / A(k,m) ,

Vi =

j=1∑
n

(pij − pi.)
2/(n− 1), VJ =

j=1∑
n

(p.j − p.)
2/(n− 1),

VJF =

j=1∑
n

(cj − c) (p.j − p.)/(n− 1), VF =

j=1∑
n

(cj − c)2/(n− 1).

3. The Result from Algorithm Analysis

Since C(s) is a linear sum of random variables, the distribution of
C(s) over Sk, k = 1, ..., n, is approximately normal when n is large,
and its mean and variance may be approximated by µk and σ2

k in (12)
and (13) respectively. Now define

Ck = minC(s) for all s ε Sk. (14)
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If Ck is viewed as the smallest order statistic associated with a
random sample of size Nk defined in (7), from the normal distribution
said above, then the asymptotic distribution of

Xk = Nk F ((Ck − µk)/σk), (15)

where F (x) is the standard normal cumulative distribution function which is
exponential with mean equal to 1 (see [2]). Now from (15) and [2, 4], although
the detailed approximate procedures are omitted in this paper, we have approx-
imated Ck as

Ck ≈ µk − σk {(π/2) log (Nk/4Xk)}1/2 (16)

where the term 4X2
k / N2

k is omitted for large Nk. When Ck and Xk are
replaced by their expected values, we obtain

τk = E(Ck) ≈ µk − σk {(π/2) log (Nk/4)}1/2 . (17)

Using (12), (13), and (17), τk may be computed for each k = 1, ..., n.

4. Conclusions

We have derived (17) from Section 3. Now if we let t be such that τt =
min τk for all k = 1, 2, ..., n, then we can compute t which minimizes τk for k =
1, 2, ..., n. Computer simulation of 100 randomly generated procurement
problems revealed the following: 50% of the time, the optimum k is either
t or. t− 1, 90% of the time, it is either t, t− 1, or t− 2, and 100% of
the time, it is either t, t− 1, t− 2, or t− 3. In other words, if n = 10,
the number of Sk which need to be searched may be reduced by about
60%, and if n = 20, by 80%. Finally, sampling methods have also been
devised to obtain solutions from those screened Sk.
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