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YEH CONVOLUTION OF WHITE NOISE FUNCTIONALS†

UN CIG JI∗, YOUNG YI KIM AND YOON JUNG PARK

Abstract. In this paper, we study the Yeh convolution of white noise
functionals. We first introduce the notion of Yeh convolution of test white
noise functionals and prove a dual property of the Yeh convolution. By ap-

plying the dual object of the Yeh convolution, we study the Yeh convolution
of generalized white noise functionals, which is a non-trivial extension. Fi-
nally, we study relations between the Yeh convolution and Fourier-Gauss,
Fourier-Mehler transform.

AMS Mathematics Subject Classification : 60H40, 46F25.

Key words and phrases : white noise theory, Yeh convolution, Fourier-
Gauss transform, Fourier-Mehler transform.

1. Introduction

Since Yeh in [14] introduced the convolution ϕ∗ψ, called the Yeh convolution,
of Wiener functionals ϕ and ψ by

ϕ ∗ ψ(y) ≡
∫
C0[0,1]

ϕ

(
1√
2
x+

1√
2
y

)
ψ

(
1√
2
x− 1√

2
y

)
m(dx) (1)

for y ∈ C0[0, 1], whenever the integral exists, where (C0[0, 1],m) is the (stan-
dard) Wiener space with the Wiener measurem, several authors studied the Yeh
convolution with relations between first variations and various transforms (see
[5] and its references).

On the other hand, the white noise theory initiated by Hida [4] to give rigor-
ous meaning of white noise as the time derivative of the Brownian motion has
been extensively developed with wide applications to stochastic calculus, mathe-
matical finance and mathematical physics, etc. The convolution product by Kuo
[8] and Fourier-Gauss transforms [2, 8] of white noise functionals are important
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applications to infinite dimensional (harmonic) analysis. Also, the convolution
products of white noise operators were studied in [6].

In this paper, we study the Yeh convolution of white noise functionals. Since
the test white noise functionals have nice regular properties, the Yeh convo-
lution of test white noise functionals is well defined (see [5]). However, from
singular properties of the generalized white noise functionals, the extension of
Yeh convolution to the generalized white noise functionals is not trivial. Hence
main purpose of this paper is to develop a method to give a rigorous meaning
of the Yeh convolution of generalized white noise functionals. For our purpose,
we study a dual property (see Theorem 3.4) of the Yeh convolution of test white
noise functionals and then as an application of the dual object, we study the
Yeh convolution of generalized white noise functionals. We also study relations
between the Yeh convolution and Fourier-Gauss, Fourier-Mehler transform (see
Theorems 3.3 and 4.4).

This paper is organized as follows: In Section 2 we recall basic notions and
well-known results in white noise theory, which are necessary for our study, see
[12, 8]. In Section 3 we introduce the notion of Yeh convolution of test white
noise functionals and prove a dual property of the Yeh convolution. We study a
relations between the Yeh convolution and Fourier-Gauss transform. In Section
4 we study the extension of the Yeh convolution to the convolution of generalized
white noise functionals. Finally, we study a relation between the Yeh convolution
and Fourier-Mehler transform.

2. Preliminaries

Let HR be a real separable Hilbert space with inner product ⟨·, ·⟩ and let A be
a positive selfadjoint operator on HR satisfying that there exists an orthonormal
basis {en}∞n=1 and an increasing sequence {ln}∞n=1 with l1 > 1 and

∑∞
n=1 l

−2
n <

∞ such that

Aen = lnen, n = 1, 2, · · · .

We note that ρ :=
∥∥A−1

∥∥
OP

= l−1
1 < 1 and

∥∥A−1
∥∥2
HS

< ∞. Then by the

standard construction from HR and A (see [8, 12]), we have a Gelfand triple:

ER ⊂ HR ⊂ E∗
R, (2)

where E∗
R is the strong dual space of ER. In fact, the topology of ER is defined

by the Hilbertian norms {|·|p ≡ |Ap·|}p≥0, where | · | is the norm generated

by ⟨·, ·⟩ and then ER becomes a countable Hilbert nuclear space. By taking
complexificaion of (2) we have the complex Gelfand triple:

E ⊂ H ⊂ E∗,

where E = ER+ iER and H = HR+ iHR. The canonical bilinear form on E∗×E
is denoted by ⟨·, ·⟩ again.
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The (Boson) Fock space Γ(H) over H is defined by

Γ(H) =

{
ϕ = (fn)

∞
n=0 : fn ∈ H⊗̂n, ∥ϕ∥2 =

∞∑
n=0

n! |fn|20 <∞

}
,

where H⊗̂n is the n-fold symmetric tensor product of H and H⊗̂0 = C. Let
Γ(A) be the second quantization of the operator A defined by

Γ(A)ϕ = (A⊗nfn)
∞
n=0, ϕ = (fn)

∞
n=0 ∈ Γ(H),

and then Γ(A) is a positive selfadjoint operator with
∥∥Γ(A)−1

∥∥
OP

< 1 and∥∥Γ(A)−1
∥∥2
HS

<∞. By the standard construction from Γ(H) and Γ(A), we have
a Gelfand triple:

(E) ⊂ Γ(H) ⊂ (E)∗.

In fact, the (projective) topology of (E) is determined by the family {∥·∥p}p≥0

of norms defined by

∥ϕ∥2p =

∞∑
n=0

n! |fn|2p , ϕ = (fn)
∞
n=0 ∈ (E).

It is known that for each Φ ∈ (E)∗ there exists a unique sequence (Fn)
∞
n=0 with

Fn ∈ (E⊗n)∗sym such that

⟨⟨Φ, ϕ⟩⟩ =
∞∑

n=0

n! ⟨Fn, fn⟩ , ϕ = (fn)
∞
n=0 ∈ (E),

in this case, Φ is denoted by Φ = (Fn)
∞
n=0.

It follows from the Bochner-Minlos theorem that there exists a unique prob-
ability measure µ on E∗

R such that its characteristic function is given by

exp

(
−1

2
|ξ|20

)
=

∫
E∗

R

ei⟨x, ξ⟩µ(dx), ξ ∈ ER.

The above probability measure µ is called the standard Gaussian measure on
E∗

R and the probability space (E∗
R, µ) is referred to as the (standard) Gaussian

space. The unitary isomorphism between L2(E∗
R, µ;C) and Γ(H), called the

Wiener-Itô-Segal isomorphism, is uniquely determined by the correspondence:

Γ(H) ∋ ϕξ =

(
1, ξ,

ξ⊗2

2!
, . . . ,

ξ⊗n

n!
, . . .

)
←→ ϕξ(x) = e⟨x, ξ⟩−

1
2 ⟨ξ, ξ⟩ ∈ L2(E∗

R, µ;C),

where ϕξ is called an exponential vector (or coherent state) and ϕξ(x) is called
the Gaussianization of ϕξ.

Since {ϕξ1 ⊗ · · · ⊗ ϕξm : ξi ∈ E, i = 1, 2, . . . ,m} spans a dense subspace of

(E)
⊗m

, every Ξ ∈ L((E)
⊗m

, ((E)
⊗n

)∗) is uniquely determined by the function
G : Em+n → C defined by

G(ξ1, . . . , ξm, η1, . . . , ηn) = ⟨⟨Ξ(ϕξ1 ⊗ · · · ⊗ ϕξm), ϕη1 ⊗ · · · ⊗ ϕηn⟩⟩ (3)
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for ξ1, . . . , ξm, η1, . . . , ηn ∈ E. In particular, for Ξ ∈ L((E), (E)∗), the form given

as in (3) is denoted by Ξ̂ and called the symbol of Ξ.

Theorem 2.1 ([7]). A Gâteaux-entire function G : E⊗m+n → C is expressed

in the form (3) with Ξ ∈ L((E)
⊗m

, ((E)
⊗n

)∗) if and only if there exist constant
numbers C ≥ 0, K ≥ 0 and p ≥ 0 such that

|G(ξ1, . . . , ξm, η1, . . . , ηn)|2 ≤ CeK(
∑m

j=1|ξj |
2
p+

∑n
k=1|ηk|2p)

for any ξ1, . . . , ξm, η1, . . . , ηn ∈ E. Moreover Ξ ∈ L((E)
⊗m

, (E)
⊗n

) if and only
if for any ϵ > 0 and p ≥ 0 there exist constant numbers C ≥ 0 and q ≥ 0 such
that

|G(ξ1, . . . , ξm, η1, . . . , ηn)|2 ≤ Ceϵ(
∑m

j=1|ξj |
2
p+q+

∑n
k=1|ηk|2−p) (4)

for any ξ1, . . . , ξm, η1, . . . , ηn ∈ E.

For more study of analytic characterization theorems in white noise theory,
we refer to [13, 9, 11, 1].

For each κl,m ∈ (E⊗l+m)∗, by applying Theorem 2.1 we can see that there
exists an operator Ξl,m(κl,m) ∈ L((E), (E)∗), called an integral kernel operator,
such that

Ξ̂(ξ, η) =
⟨
κl,m, η

⊗l ⊗ ξ⊗m
⟩
e⟨ξ, η⟩, ξ, η ∈ E.

Note that Ξl,m(κl,m) ∈ L((E), (E)) if and only if κl,m ∈ E⊗l ⊗ (E⊗m)∗. For
f ∈ E∗, we write

Ξ0,1(f) = a(f), Ξ1,0(f) = a∗(f).

The operator a(f) and a∗(f) are called the annihilation and creation operator,
respectively.

Let τ be the trace corresponding to the identity operator I ∈ L(E,E) under
the canonical isomorphism L(E,E∗) ∼= (E ⊗E)∗ by the kernel theorem, that is,

⟨τ, η ⊗ ξ⟩ = ⟨ξ, η⟩ , ξ, η ∈ E.
The Gross Laplacian [3] ∆G ∈ L((E), (E)) is defined by ∆G = Ξ0,2(τ) and then
we have

∆̂G(ξ, η) = ⟨ξ, ξ⟩ e⟨ξ, η⟩, ξ, η ∈ E.

3. Convolutions of Test White Noise Functionals

In this section, we study the Yeh convolution of test white noise functionals.

3.1. Translation and Dilation Operators. For each y ∈ E∗
R, the translation

operator Ty on (E) is defined by

Tyϕ(x) = ϕ(x+ y), x ∈ E∗
R.

In fact, for ξ ∈ E we have

Tyϕξ = e⟨y, ξ⟩ϕξ = ea(y)ϕξ, T̂y(ξ, η) = e⟨y, ξ⟩+⟨ξ, η⟩.

Therefore, by applying Theorem 2.1, we can see that Ty ∈ L((E), (E)).
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For each α ∈ C, by applying Theorem 2.1 we can easily see that there exists
an operator Dα ∈ L((E), (E)) such that

D̂α(ξ, η) = eα⟨ξ, η⟩+
α2−1

2 ⟨ξ, ξ⟩, ξ, η ∈ E,

which implies that

Dαϕξ(x) = e
α2−1

2 ⟨ξ, ξ⟩ϕαξ(x) = ϕξ(αx), x ∈ E∗
R, ξ ∈ E.

Since the exponential vectors ϕξ span a dense subspace of (E) and Dα is con-
tinuous,

Dαϕ(x) = ϕ(αx), x ∈ E∗
R, ϕ ∈ (E).

Therefore, Dα is called the dilation. Moreover, we have

Dα = Γ(αI)e
1
2∆G((α2−1)I).

For each α ∈ C and y ∈ E∗, put

Rα,y = DαTy.

Then for any ξ ∈ E, we have

Rα,yϕξ(x) = ϕξ(αx+ y) = ϕαξ(x)ϕξ(y)e
α2

2 ⟨ξ, ξ⟩, (5)

which implies that

R̂α,y(ξ, η) = eα⟨ξ, η⟩+
α2−1

2 ⟨ξ, ξ⟩+⟨y, ξ⟩, ξ, η ∈ E.

Thus we have the following expression:

Rα,y = Γ(αI)e
1
2∆G((α2−1)I)ea(y) ∈ L((E), (E)). (6)

3.2. Convolutions of Test White Noise Functionals. We start with the
following lemma for the existence of the operator Cl.

Lemma 3.1. There exists a unique operator Cl ∈ L((E) ⊗ (E), (E)) such that
for any ξ1, ξ2, η1 ∈ E,⟨⟨

Cl(ϕξ1 ⊗ ϕξ2), ϕη1

⟩⟩
= e

1√
2
⟨ξ1−ξ2, η1⟩. (7)

Proof. For any p, q ≥ 0, we obtain that∣∣∣∣ 1√
2
⟨ξ, η⟩

∣∣∣∣ ≤ 1√
2
|ξ|p |η|−p (8)

≤ 1√
2
ρq |ξ|p+q |η|−p

≤ 1

8ϵ
ρ2q |ξ|2p+q + ϵ |η|2−p

for any ϵ > 0. Since for any ϵ > 0, there exists q ≥ 0 such that ρ2q ≤ 8ϵ2. The
right hand side of (7) is denoted by G(ξ1, ξ2, η1). Then by applying (8), we can
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see that G(ξ1, ξ2, η1) satisfies (4) with m = 2 and n = 1. Therefore, by Theorem
2.1, there exists a unique operator Cl ∈ L((E)⊗ (E), (E)) such that⟨⟨

Cl(ϕξ1 ⊗ ϕξ2), ϕη1

⟩⟩
= G(ξ1, ξ2, η1), ξ1, ξ2, η1 ∈ E,

which gives the proof. �

Lemma 3.2. We have

Cl(ϕξ1 ⊗ ϕξ2)(y) =
⟨⟨
R 1√

2
, 1√

2
yϕξ1 , R 1√

2
,− 1√

2
yϕξ2

⟩⟩
, y ∈ E∗

R

for ξ1, ξ2 ∈ E.

Proof. For any ξ1, ξ2 ∈ E, by applying (5), we see that⟨⟨
R 1√

2
, 1√

2
yϕξ1 , R 1√

2
,− 1√

2
yϕξ2

⟩⟩
= ϕ 1√

2
(ξ1−ξ2)(y), (9)

which gives the proof. �

From Lemma 3.2, for any ϕ, ψ ∈ (E), we write

ϕ ∗lY ψ = Cl(ϕ⊗ ψ),
which is called the Yeh convolution of ϕ and ψ and coincides with the convolution
defined in (1).

For each α, β ∈ C, by applying Theorem 2.1 we can easily see that there exists
a unique operator Gα,β ∈ L((E), (E)) such that

Ĝα,β(ξ, η) = e
α
2 ⟨ξ, ξ⟩+β⟨ξ, η⟩, ξ, η ∈ E.

The operator Gα,β is called the Fourier-Gauss transform [2] and its adjoint oper-
ator Fα,β = G∗α,β ∈ L((E)∗, (E)∗) is called the Fourier-Mehler transform. Then
we have

Gα,β = Γ(βI)e
α
2 ∆G (10)

and the integral representation:

Gα,βϕ(x) =
∫
E∗

R

ϕ
(
βx+

√
α+ 1− β2 y

)
µ(dy), x ∈ E∗

R

(see [10, 2, 5]). Then the following theorem gives a relation between the Yeh
convolution and the Fourier-Gauss transform.

Theorem 3.3. Let α ∈ C. Then for any ϕ, ψ ∈ (E), we have

Gα2,α

(
ϕ ∗lY ψ

)
=

(
Gα2

2 , α√
2

ϕ

)(
Gα2

2 ,− α√
2

ψ

)
, (11)

where the right hand side is the pointwise multiplication.

Proof. For any ξ, η ∈ E, by applying (9), we obtain that

Gα2,α

(
ϕξ ∗lY ϕη

)
= Gα2,αϕ 1√

2
(ξ−η)

= e
α2

4 ⟨ξ−η, ξ−η⟩ϕ α√
2
(ξ−η)
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= e
α2

4 ⟨ξ, ξ⟩+α2

4 ⟨η, η⟩ϕ α√
2
ξϕ− α√

2
η

=

(
Gα2

2 , α√
2

ϕξ

)(
Gα2

2 ,− α√
2

ϕη

)
,

which gives the proof of (11). �

Theorem 3.4. For any ϕ, ψ, φ ∈ (E), we have⟨⟨
ϕ ∗lY ψ, φ

⟩⟩
=

⟨⟨
ϕ(y),

⟨⟨
ψ, R− 1√

2
, 1√

2
yφ

⟩⟩⟩⟩
,

where the right hand side is understood as the bilinear form for the functions of
variable y.

Proof. For any ξ2, η ∈ E, by applying (5), we obtain that⟨⟨
ϕξ2 , R− 1√

2
, 1√

2
yϕη

⟩⟩
= e

− 1√
2
⟨ξ2, η⟩ϕ 1√

2
η(y),

which implies that⟨⟨
ϕξ1(y),

⟨⟨
ϕξ2 , R− 1√

2
, 1√

2
yϕη

⟩⟩⟩⟩
= e

1√
2
⟨ξ1−ξ2, η⟩

=
⟨⟨
ϕξ1 ∗lY ϕξ2 , ϕη

⟩⟩
.

Therefore, the proof is immediate from the continuities since exponential vectors
span a dense subspace of (E). �

From Theorem 3.4, we write

ψ ∗rY φ(y) =
⟨⟨
ψ, R− 1√

2
, 1√

2
yφ

⟩⟩
, y ∈ E∗

R.

Then we have ⟨⟨
ϕ ∗lY ψ, φ

⟩⟩
= ⟨⟨ϕ, ψ ∗rY φ⟩⟩

for any ϕ, ψ, φ ∈ (E).

4. Convolution of Generalized White Noise Functionals

In this section, we study an extension of convolution operator to generalized
white noise functionals.

Theorem 4.1. There exists an operator Cr ∈ L((E)∗ ⊗ (E), (E)) such that

Cr(ψ ⊗ φ) = ψ ∗rY φ
for ψ,φ ∈ (E).

Proof. Consider the function G : E × E × E → E defined by

G(ξ1, η1, η2) = e
1√
2
⟨η1−η2, ξ1⟩, ξ1, η1, η2 ∈ E.

Then by applying similar arguments used in the proof of Lemma 3.1 and Theo-
rem 2.1, there exists a unique operator Ξ ∈ L((E), (E)⊗ (E)) such that

⟨⟨Ξ(ϕξ1), ϕη1 ⊗ ϕη2⟩⟩ = G(ξ1, η1, η2), ξ1, η1, η2 ∈ E.
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On the other hand, by the kernel theorem, we have the following topological
isomorphisms:

L((E)∗ ⊗ (E), (E))

J1→∼= (E)⊗ (E)⊗ (E)∗
J2→∼= L((E), (E)⊗ (E)).

In fact, for any Ξ ∈ L((E)∗ ⊗ (E), (E)) and Φ,Ψ ∈ (E)∗, ϕ ∈ (E), we obtain
that

⟨⟨Ξ(Φ⊗ ϕ), Ψ⟩⟩ = ⟨⟨J1Ξ, Ψ⊗ Φ⊗ ϕ⟩⟩
= ⟨⟨(J2J1Ξ) (ϕ), Ψ⊗ Φ⟩⟩ .

Put

Cr = J−1
1

(
J−1
2 (Ξ)

)
.

Then for any ξ1, η1, η2 ∈ E, we obtain that

⟨⟨Cr(ϕη2 ⊗ ϕξ1), ϕη1⟩⟩ = ⟨⟨J1(Cr), ϕη1 ⊗ ϕη2 ⊗ ϕξ1⟩⟩
= ⟨⟨J2(J1(Cr))(ϕξ1), ϕη1 ⊗ ϕη2⟩⟩
= ⟨⟨Ξ(ϕξ1), ϕη1 ⊗ ϕη2⟩⟩

= e
1√
2
⟨η1−η2, ξ1⟩

=
⟨⟨
Cl(ϕη1 ⊗ ϕη2), ϕξ1

⟩⟩
.

Therefore, for any ξ1, η1, η2 ∈ E, we have

⟨⟨Cr(ϕη2 ⊗ ϕξ1), ϕη1⟩⟩ = ⟨⟨ϕη1 , ϕη2 ∗rY ϕξ1⟩⟩ = ⟨⟨ϕη2 ∗rY ϕξ1 , ϕη1⟩⟩ ,
which implies the proof. �

For each Φ ∈ (E)∗ and ϕ ∈ (E), from Theorem 4.1, the convolution Φ ∗rY ϕ ∈
(E) is defined by

Φ ∗rY ϕ = Cr(Φ⊗ ϕ).

Theorem 4.2. The operator Cl can be extended to (E)∗⊗ (E)∗ as a continuous
linear operator in L((E)∗ ⊗ (E)∗, (E)∗) of which the extension is denoted by the
same symbol.

Proof. By the dual property, the proof is enough to see that (Cl)∗ ∈ L((E), (E)⊗
(E)). For any ξ1, η1, η2, we have⟨⟨

(Cl)∗(ϕξ1), ϕη1 ⊗ ϕη2

⟩⟩
=

⟨⟨
Cl(ϕη1 ⊗ ϕη2), ϕξ1

⟩⟩
=

⟨⟨
ϕη1 ∗lY ϕη2 , ϕξ1

⟩⟩
= e

1√
2
⟨η1−η2, ξ1⟩.

Then by applying similar arguments used in the proof of Lemma 3.1, we see that
(Cl)∗ ∈ L((E), (E)⊗ (E)). Therefore, Cl ∈ L((E)∗ ⊗ (E)∗, (E)∗). �

For each Φ,Ψ ∈ (E)∗, the Yeh convolution Φ ∗lY Ψ ∈ (E)∗ is defined by

Φ ∗lY Ψ = Cl(Φ⊗Ψ).
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Theorem 4.3. For any Φ,Ψ ∈ (E)∗ and φ ∈ (E), we have⟨⟨
Φ ∗lY Ψ, φ

⟩⟩
= ⟨⟨Φ, Ψ ∗rY φ⟩⟩ .

Proof. The proof is immediate by the definitions of the convolutions ∗lY and
∗rY. �

The following theorem gives a relation between the Yeh convolution and the
Fourier-Mehler transform.

Theorem 4.4. Let α ∈ C. Then for any Φ,Ψ ∈ (E)∗, we have

(Fα,1Φ) ∗lY (Fα,1Ψ) = Fα,1

(
Φ ∗lY Ψ

)
. (12)

Proof. Note that for any α ∈ C, β ∈ C \ {0} and ξ ∈ E,

Γ(βI)eα∆Gϕξ = eα⟨ξ, ξ⟩ϕβξ = eαβ
−2∆GΓ(βI)ϕξ,

which implies that

Γ(βI)eα∆G = eαβ
−2∆GΓ(βI).

Also, we note that for any α ∈ C and y ∈ E∗, ea(y)eα∆G = eα∆Gea(y). Therefore,
by (6) and (10), we obtain that

Ψ ∗rY Gα,1ϕ =

⟨⟨
Ψ, Γ

(
− 1√

2
I

)
e−

1
4∆Ge

1√
2
a(y)

e
α
2 ∆Gϕ

⟩⟩
=

⟨⟨
Ψ, eα∆GΓ

(
− 1√

2
I

)
e−

1
4∆Ge

1√
2
a(y)

ϕ

⟩⟩
= (F2α,1Ψ) ∗rY ϕ,

and

Gα,1 (ϕξ ∗rY ϕη) = e
− 1√

2
⟨ξ, η⟩+α

4 ⟨η, η⟩
ϕ 1√

2
η = ϕξ ∗rY

(
Gα

2 ,1ϕη
)
,

which implies that

Gα,1 (Ψ ∗rY φ) = Ψ ∗rY
(
Gα

2 ,1φ
)
, Ψ ∈ (E)∗, φ ∈ (E).

Therefore, we obtain that⟨⟨
Fα,1Φ ∗lY Fα,1Ψ, φ

⟩⟩
= ⟨⟨Φ, Gα,1 (Fα,1Ψ ∗rY φ)⟩⟩
=

⟨⟨
Φ,

(
Ψ ∗rY Gα

2 ,1Gα
2 ,1φ

)⟩⟩
= ⟨⟨Φ, (Ψ ∗rY Gα,1φ)⟩⟩

=
⟨⟨
Fα,1

(
Φ ∗lY Ψ

)
, φ

⟩⟩
,

which gives the proof of (12). �
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