J. Appl. Math. & Informatics Vol. 31(2013), No. 5 - 6, pp. 813 - 823
http://dx.doi.org/10.14317/jami.2013.813

STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM
PROBLEMS, FIXED POINT PROBLEMS OF
QUASI-NONEXPANSIVE MAPPINGS AND VARIATIONAL
INEQUALITY PROBLEMS'

MENG LI*, QIUMEI SUN AND HAIYUN ZHOU

ABSTRACT. In this paper, a new iterative algorithm involving quasi-nonex-
pansive mapping in Hilbert space is proposed and proved to be strongly
convergent to a point which is simultaneously a fixed point of a quasi-
nonexpansive mapping, a solution of an equilibrium problem and the set
of solutions of a variational inequality problem. The results of the paper
extend previous results, see, for instance, Takahashi and Takahashi (J Math
Anal Appl 331:506-515, 2007), P.E.Maing é (Computers and Mathematics
with Applications, 59: 74-79,2010) and other results in this field.
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1. Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex subset
of H. Let ¢ be a bifunction of C' x C' into R, where R is the set of real numbers.
The equilibrium problem for ¢ : C x C — R is to find = € C such that

¢(x,y) >0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by EP(¢). Given a mapping T : C' — H,
let ¢(z,y) = (Tx,y — x) for all z,y € C. Then, z € EP(¢) if and only if
(Tz,y—2) >0 for all y € C, i.e., 2z is a solution of the variational inequality.
Numerous problems in physics, optimization and economics reduce to find a
solution of (1.1). Some methods have been proposed to solve the equilibrium
problem; see, for instance, [1-13].
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A mapping T of C into H is called nonexpansive if
[Tz =Tyl < |lz —yll, ¥,y € C.

We denote by F(T') the set of fixed points of T'. If C C H is bounded, closed and
convex and T is a nonexpansive mapping of C into itself, then F(T') is nonempty;
for instance, see [14].There are some methods for approximation of fixed points
of a nonexpansive mapping. In 2000, Moudafi [15] proved the following strong
convergence theorem.

Theorem 1.1 ([15]). Let C be a nonempty closed convex subset of a Hilbert
space H and let T be a nonexpansive mapping of C into itself such that F(T)
is nonempty. Let f be a contraction of C into itself and let {x,} be a sequence
defined as follows: x1 = x € C and

En

T(xy, —_—

f(@n), (1.2)

Tn4+1 = 1+¢
n

for allm € N, where {e,} C (0,1) satisfies

lim &, =0, E €n =00 and lim |
n— 00 n—oo &, + 1 En

1 1

n=1
Then {x,} converges strongly to z € F(T'), where z = Pp(ryf(2) and Ppr) is
the metric projection of H onto F(T).

Such a method for approximation of fixed points is called the viscosity ap-
proximation method. In 2007, Takahashi and Takahashi [8] proved the following
fixed point theorem.

Theorem 1.2. Let C' be a nonempty closed conver subset of H. Let ¢ be a
bifunction from C x C to R satisfying (A1) — (A4) and let T be a nonexpansive
mapping of C into H such that F(T)NEP($) # 0. Let f be a contraction of H
into itself and let {x,} and {u,} be sequences generated by x1 € H and

Tni41 = Oénf(mn) + (]. — Oén)T’U,n (13)

for allm € N, where a,, C [0,1] and 7, C (0,00) satisfy

(1) nh_{rgo an =0, >0 o, =00, Y00 |nt1 — ay| < oo;

{¢(un,y> + Ay — i,y —20) 20, Vy €C,

(2)liminfr, >0 and > 7 [rng1 — 1l < 00
n—oo
Then, {x,} and {u,} converge strongly to z € F(T) N EP(¢$), where z =
Prrynere) f(2).
A mapping T of C into H is called quasi-nonexpansive if
1Tz —v| <||lz—2|, ¥V (x,v) € C x F(T).

If T : C — H is nonexpansive and the set F'(T) of fixed points of T' is nonempty,
then T' is quasi-nonexpansive.
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In 2010, P.E.Maing é [16] proved the following convergence result of fixed
point for the quasi-nonexpansive mappings in Hilbert spaces.

Theorem 1.3. Let C' be a nonempty closed convex subset of H, and let {x,}
be a sequence defined as follows,

x1 € H and xpy1 = anf(x,) + (1 — an)Tuzn, (1.4)

where {an} is a slow vanishing sequence, i.e.

o0
lim «, =0, E Qy = 00,
n—oo

n=1

€ (0,1), f:C — C a contration of modulus p € [0,1),T,, := (1 —w)I + wT
(I being the identity mapping on C), with two main conditions on T':
(i1) T : C — C' is quasi-nonexpansive;
(i2) T is demiclosed on C, that is {yx} C C,yx — y weakly, (I —T)(yx) — 0
strongly = y € F(T).

Then {x,} converges strongly to the unique element z € F(T),where z =
PrrynEP(s) f(2), which equivalently solves the following variational inequality
problem:

z€ F(T) and (Yv € F(T)), ((I— f)z,v—2z) > 0. (1.5)

In this paper, motivated and inspired by the above results, we introduce a
new iterative algorithm in Hilbert space H. Let C' be a nonempty closed convex
subset of H. Let ¢ be a bifunction from C' x C to R satisfying (A1l)—(A4) and
let T, : (1 — w)I 4+ wT (I being the identity mapping on C) be a mapping with
T : C — H being quasi-nonexpansive and demi-closed on C,w € (0, 1), such
that F(T)NEP(¢) # 0. Let f : H — H be a contraction of modulus p € [0, 1),
and let {z,}and {u,} be sequences generated by z1 € H and

(1.6)

D(tn,y) + 7= (Y = tn, un — xn) >0, Vy € C,
Tnt1 = @ f(Tn) + (1 — ap)Twtin,

for all n € N, where {a,} C (0,1), and {r,} C (0, 00) satisty
(1) Iim o, = 0,207 ay = 00; (2)liminfr, > 0, 22, |rp41 — | < 00,

n—oo n—oo
for finding a common element of the set of fixed points of a quasi-nonexpansive
mapping and the set of solutions of an equilibrium problem in Hilbert space.
Furthermore, we also proved that {z,,} and {u,,} converge strongly to z € F(T)N
EP(¢), where z = Pp(ryngp(s)f(2), which equivalently solves the following
variational inequality problem:

z € F(T)NEP(¢),and(Vv € F(T)NEP(¢)),{((I — f),v—2z) > 0.

The results of this paper extend some previously published results, see for in-
stance [5,6].
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2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space endowed
with an inner product and its induced norm denoted by (-, -) and ||, respectively.
C is a closed convex subset of H. When {x,,} is a sequence in H, x,, — = implies
that x,, converges weakly to x, and z,, —> = means the strong convergence. In
a real Hilbert space H, we have

Az + (1= N)yll* = Alll* + (1 = NIyl = A1 = Nz -y,

for all z,y € H, and A € R. Let C be a nonempty closed convex subset of H.
Then, for any « € H, there exists a unique nearest point in C, denoted by Px(x),
such that
o — Po(@) < o —yl, ¥y € C.

Such a Pg is called the metric projection of H onto C. We know that Pg is
nonexpansive.

For solving the equilibrium problem for a bifunction ¢ : C x C — R, let us
assume that ¢ satisfies the following conditions:
(Al)p(z,2) =0 for all z € C;
(A2)¢ is monotone, i.e. ¢(z,y) + ¢(y,x) <0 for all z,y € C;
(A3)for each x,y,z € C,tlig}) o(tz+ (1 —t)x,y) < d(z,y);

(Ad)for each x € C, y — ¢(x,y) is convex and lower semicontinous.

Lemma 2.1 ([1)). Let T be a quasi-nonexpansive mapping on C with F(T) # 0,
and set T,, :== (1 — w)I + wT for w € (0,1]. Then the following statements are
reached:

(i) (x — Tyox, o —v) > w|z — Tx|]?, V(z,v) € C x F(T);

(ii) Tz — o] < & — gl — w(1 - )Tz — o], ¥(z,v) € C x F(T);

(iti) T, is quasi-nonexpansive mappings;

(iv) F(T) = F(T.,).

Lemma 2.2 ([1]). Let {T',} be a sequence of real numbers that does not de-
crease at infinity, in the sense that there exists a subsequence {I'y;}j>1 of {I'n}
which satisfies T'y; < Ty, 11 for all j > 1. Also consider the sequence of integers

{T(n)}n>n, defined by
7(n) =mazx{k <n| Tk < Tk}

Then {T(n)}n>n, is a nondecreasing sequence verifying lim,,_,o, 7(n) = oo, and
for all n > ny, it holds that I'z(,y < T'7()41 and we have

Ty < Trpnyir- (2.1)

Lemma 2.3 ([1]). Let C be a nonempty closed convex subset of H and let ¢ be
a bifunction of C x C — R satisfying (A1)—(A4). Let r > 0, and x € H, then
there exists z € C' such that

1
¢(z,y)+;<y—z,z—x> ZO, VyeC
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Lemma 2.4 ([1]). Assume that ¢ : C x C — R satisfies (Al) — (A4). For
r >0 and x € H, define a mapping T, : H — C as follows:

1
To(@) = {2 € C: 6(2,9) + —{y— 2,2 —2) 20, Yy e C

for all z € H. Then, the following hold:
(1)T. is single-valued;
(2)T. is firmly nonexpansive, i.e., for any x,y € H,

[Tz — Toyl|* < (Trx — Ty, x — y);

(3)F(T;) = EP(¢), ¥V r > 0;
(4)EP(¢) is closed and conver.

Lemma 2.5 ([17]). Let {an} be a sequence of non-negative real numbers sat-
isfying ant1 < (1 — yn)an + On, where {y,} C (0,1) and {6,} C (—o0,+00)
satisfying the condition:
(1552 = 00;
(2) lim sup % <0, or >0 |6n] < oo

n—roo

Then lim «, = 0.
n—oo

Lemma 2.6 ([17]). If z is solution of (1.5) with T : C' — C demi-closed and
{yn} C C is a bounded sequence such that || Ty, — yn|| — 0,then

liminf((I — f)z,yn, — z) > 0.

n—oo

3. Main results

Theorem 3.1. Let C' be a nonempty closed convexr subset of H. Let ¢ be a
bifunction from C x C to R satisfying (A1)-(A4), and let T,, : (1 —w)l +wT (1
being the identity mapping on C) be a mapping with T : C — H being quasi-
nonexpansive and demi-closed on C, w € (0,1) , such that F(T) N EP(¢) # 0.
Let f : H — H be a contraction of modulus p € [0,1), and let {x,}and {u,}
be sequences generated by x1 € H and

{¢(un,y) + Ay — iy —20) 20, Vy €C,

Tn4+1 = anf(xn) + (]- - an)Twuna (31)

for alln € N, where {a,} C [0,1], and {r,} C (0,00) satisfy

(1) lim a, =0,>°7, ap, = 00; (2) liminfr, >0, 22, |rp41 — rp| < 00, then
n—oo n—r00

{zn} and {u,} converge strongly to z € F(T)NEP(¢), where z = Ppiry pprs)f(2),

which equivalently solves the following variational inequality problem:

2 € F(T)NEP(¢), (Yo e F(T)NEP(¢)), (I —f),v—2z)>0.
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Proof. Let Q = Pp(rynEp(g)- Then Qf is a contraction of H into itself. In fact,
there exists p € [0,1), such that ||f(z) — f(y)| < pllz — y]| for all z,y € H. So
we have that

1Qf(x) = QF W) < [If (=) = FW)I < pllz —yll, (3.2)

for all x,y € H. So Qf is a contraction of H into itself. Since H is complete,
there exists a unique element z € H such that z = Qf(z). Such a z € H is an

element of C.
Let v € F(T) N EP(¢), then from u,, = T}, x,, we have
lun, — vl < NIy, zn — Tr 0|l < JJlxn — |, ¥V 2,y € C, (3.3)
|1 Twn = ol* < [lun —ol* —w(1 = w) [ Tup —ul® < [lun = ol* < [|lzn —0l*, (3.4)
for all n € N. Put M = max{||z1 — v||, ﬁ”f(v) —v||}. Tt is obvious that
|1 — v|| < M. Suppose ||z, —v|| < M. Then, we have
[zn41 — vl = lan f(zn) + (1 — an)Twun — |
S anf(@n) = fF) | + anllf(v) = vl + (1 = ) | Twzn — vl|
< lomp + (1= an)lllzn — vl + anl|f(v) - v]|
— L= (1= gl = ol + an(1 - p) L=
<[1—-a,(1—-p)M+a,(l—p)M =M.

(3.5)

So we have that ||z, — v|| < M for any n € N and hence {z,} is bounded.
We also obtain that {u,}, {Twtn}, {Twrn}, {f(2,)} and {f(u,)} are bounded.
Then we have

[Zn41 — 'U||2 = [lan fan) + (1 — an)Twun — U||2
<l f (@) + (1 = an) Touy — || (3.6)
< an| f(zn) — sz + (1 = an)|[Tou, — U”z-
By Lemma 2.1, v € F(T,), so
|1 Totn — 0] < 2 — 0] = w(1 = w)|[| Ty — unll?,
and (3.6) equivalently
lnss — ol
< anllf(@n) = v]|* + (1 = an)
< anllf(@n) = v]|* + (1 — an)
< anllf(@n) = v)|* + (1 = an)en —ol* = (1 - an

(lzn = oll* = w(1 = )[[Tun — unl|*)
(lzn = l* = w(1 =) Tun - un|) 3.7)
Jw(l = )| Tun = un®
< (1= an)llzn = ol* + anllf (20 = 0)|* = (1 = an)w(l = )| Tun — un|?,
(3.7) can be equivalently rewritten as

zns1 = vl = llon = o] + (1 = an)w (1l = w) [ Tun — unlf?

(3.8)
< —aplz, — U||2 + an |l f(zn) — U||2~
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Setting T',, = ||z, — v||?, we have
Togt — Do+ (1= a)w(l —w)||Tuy — up?
< an([|f(zn) = zall* + 2((f = Dn, 20 — v)) (3.9)
< ap|[f(@n) = @n? + 200 ((f = Dn, 20 — 0).
The rest of the proof will be divided into two parts:

Case 1. Suppose that there exists n; such that T, := ||z, — v[|?, n > n; is
nonincreasing, i.e. |z, — v||? > ||[zns1 — v||*. In this situation, {I',} is then
convergent because it is also nonnegative(hence it is bounded from below), so
that lim, oo (I'n41 —'n) = 0; together with (3.9), and «,, — 0, and the
boundness of {z,}, we obtain

lim || Tu, — un|* = 0.
n—oo

Next, we show that ||, — uy| — 0 as n — o0. Let v € F(T) N EP(¢), we
have
lup =l = |17, 20 = T, 0l < ATy — Ty, 0, 20 — )

1
= (Up — 0, Ty —0) = 5(”“71 - U||2 +[|zn — ””2 — |lzn — UnHQ)v

and hence
tn = v]|* < |lzn — 0l = [0 — uall®.
12

Therefore, from the convexity of || - ||%, we have

[Zn+1 = ol = flan f(zn) + (1 = an)Twun — ||
< an|lf(@n) = ol* + (1 = an)|lun — o]
< (1= an)llen —ol* + anl f(za) = ol = (1 = @n)&n — ual?
and hence,
(1= an)llen —unl® < (1= an)en —vl|* + anll f(@n) — vl* = [l2pt1 — || (3.10)
< an|f(@n) = vl = |2nt1 — vlI* + |20 — 0|1 + anllzn — ||,

because that
lim (T30 —Ty) =0,

n— oo
we obtain that
lim ||z, —u,| =0.
n— oo

Next, we show that
limsup(f(z) — z, 2, — z) <0,

n—oo
where z = Pp(r)ngp(s)f(2). To show this inequality, we choose a subsequence
{tn,} of {un} such that

_lim (f(z) = z,2pn, — z) = limsup(f(z) — z,z, — 2).

Since {uy, } is bounded ,there exists a subsequence {u,,; } of {u,,}, which con-
verges weakly to € without loss of generality, we can assume that {u,,} — €.
Since || Tun — up|| — 0, T is demi-closed, we known that any weak cluster-point
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of {u,} belongs to F(T). So, we get ¢ € F(T). Let us show ¢ € EP(¢). By
Uup, = T, , we have

1
¢(un,y)+;<y—un,un—xn> >0,VyeC

n

From (A2), we also have

1
7@/ — Up, Up — xn> > (b(yaun)
and hence

since ™"+ — 0 and u,, — ¢, from (A4) we have ¢(y,e) <0, Vy € C.

For ¢ with 0 < ¢ <landyeC,lety; =ty+(1—t)e. Sincey € C and e € C,
we have y; € C, and hence ¢(y:, &) < 0, so from (A4) we have

0= ¢(yt7yt) S t¢(yt7y) + (1 - t)¢(yt7€) S t¢(yta y))

and hence 0 < ¢(y, y). From (A4s), we have 0 < ¢(e,y) for all y € C, and hence
€ € EP(¢). Therefore ¢ € F(T) N EP(¢). Since z = Pp(p)npp(e)f(2), we have

limsup(f(z) —z,z, —2) = .l_i)m (f(z)—z,2pn, —2) = (f(2) —z,e—2z) < 0. (3.11)
n—roo K2 o0
So we have
lenr1 = 212 = llan fzn) + (1 — an)Twun — 2|
< apllf(zn) = 2lI1” + 2an (1 = an)(f(zn) = 2, Twun — 2) + (1 = an)?||Toun — 2|
<apllf(zn) =2l + (1 = an)?(lzn = 2)* = w(l = 0)[Tun — unl))
4+ 2an (1 — an){f(xn) — f(2), Twun — 2) + 2an(1 — an){(f(2) — 2, Twun — 2) (3.12)
< (1= 2an +a})[lzn — 2|1 + ol f(zn) — 211 = (1 — an)®w(l = )| Tun — un|
+ 20 (1 — an)pllzn — 2|2 + 200 (1 — an){(f(2) — 2, Twtin — 2)
=1 —n)llzn — ZH2 +on
where
Tn = on[2 — an — 2p(1 — an)];
8 = o || f(zn) = 2l” + 200 (1 — an)(f(2) = 2, Twuy — 2)

because of Y | v, = o0, and limsup,, ., 7* < 0, by Lemma 2.5, we have
lim ||z, — 2||* = 0.
n— oo

Case 2. Suppose there exists subsequence {I'y, }x>0 of {I'n}n>0, such that
{Tn,.} <{Tn,,1}, VE > 0. In this situation, we consider the sequence of indices
{r(n)} as defined in Lemma 2.2. It follows that I';(,y 11 — () > 0, which from
(3.9) amounts to

(1 = army))w(l = W) Tur(n) = Ur(myll®
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< Qr(n) Hf(xr(n)) — Lz (n) ||2 + 2aT(n)<(f - I)xr(n)v Tr(n) — U>7
hence, by the boundedness of {z,,} and a, — 0, we immediately obtain

nh_)rréo |1 TUr () — Ur@m)|l = 0.
As T ()41 — I'r(ny > 0, which from (3.10), amounts to

nlggo ||$T(TL) — Ur(n) ” = 07

which from (3.11), amounts to

limsup<f(2) — 2, Tr(n) — Z> <0,

n—oo

which from (3.12), amounts to
1 — 2 =
nh_r)r;o 27y — 2]|* =0,

Then, recalling that I', < T'7 ()41, by Lemma 2.2, we conclude that lim,, ;o ||, —
z||? = 0. Following the proof of case 1 and case 2 we obtain that:

{z,,} and {u, } converge strongly to z € F(T)NEP(¢), where z = Pr(ryn pr(s)f(2)-
Which equivalently solves the following variational inequality problem:

z € F(T)NEP(¢), and Vv € F(T)NEP(¢)), (I— f),v—2)>0.

As direct consequences of Theorem 3.1, we obtain two corollaries.

Corollary 3.2. Let C' be a nonempty closed convex subset of H and let T,, :
(1 —w)l +wT be a mapping with T : C — H being quasi-nonexpansive and
demi-closed on C, w € (0,1) , such that F(T) # 0. Let f : H — H be
a contraction of modulus p € [0,1), and let {x,} be a sequence generated by
z1 € H and

Tn+1 = O‘nf(xn) + (1 - O‘n)TwPCIny
for alln € N, where {a,} C [0,1], satisfy lim o, =0,> 7 an = 00;
n—oo
then {x,} converges strongly to z € F(T), where z = Pp(1) f(2).

Proof. Put ¢(x,y) =0 for all z,y € C and r,, = 1 for all n € N in Theorem 3.1.
Then, we have u,, = Pox,,. So, from Theorem 3.1, the sequence {z,,} generated
by 1 € H and
Tnt1l = anf(xn) + (1 - an)TwPC’-Tn>

for all n € N, converges strongly to z € F(T'), where z = P f(2). O
Corollary 3.3. Let C be a nonempty closed convex subset of H. Let ¢ be a
bifunction from C x C to R satisfying (A1)-(A4) such that EP($) # 0. Let
[+ H — H be a contraction of modulus p € [0,1), and let {z,} and {u,} be
sequences generated by x1 € H and

¢(unay> + %n<y — Up, Up *mn> >0, VyedC,

Tn4+1 = anf(xn) + (1 - an)una
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for alln € N, where {a,} C [0,1], and {r,} C (0,00) satisfy

(1) lim a, =0,> ", =00; (2) liminfr, >0, X220, [rpq1 — 7| < 00,

then {x,} and {u,} converge strongly to z € EP(¢), where z = Pgpg) f(2).

Proof. Put T,z = z for all x € C in Theorem 3.1. Then, from Theorem 3.1,
the sequence {z,} and {u,} generated in Corollaty 3.3 converge strongly to
z € EP(¢), where z = Prpg) f(2). O
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