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INEQUALITY PROBLEMS†
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Abstract. In this paper, a new iterative algorithm involving quasi-nonex-
pansive mapping in Hilbert space is proposed and proved to be strongly
convergent to a point which is simultaneously a fixed point of a quasi-
nonexpansive mapping, a solution of an equilibrium problem and the set

of solutions of a variational inequality problem. The results of the paper
extend previous results, see, for instance, Takahashi and Takahashi (J Math
Anal Appl 331:506-515, 2007), P.E.Maing é (Computers and Mathematics
with Applications, 59: 74–79,2010) and other results in this field.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H. Let ϕ be a bifunction of C×C into R, where R is the set of real numbers.
The equilibrium problem for ϕ : C × C −→ R is to find x ∈ C such that

ϕ(x, y) ≥ 0, ∀ y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (ϕ). Given a mapping T : C → H,
let ϕ(x, y) = ⟨Tx, y − x⟩ for all x, y ∈ C. Then, z ∈ EP (ϕ) if and only if
⟨Tz, y − z⟩ ≥ 0 for all y ∈ C, i.e., z is a solution of the variational inequality.
Numerous problems in physics, optimization and economics reduce to find a
solution of (1.1). Some methods have been proposed to solve the equilibrium
problem; see, for instance, [1-13].

Received July 10, 2012. Revised December 24, 2012. Accepted January 13, 2013.
∗Corresponding author. †This work was supported by the National Natural Science Foundation

of China Grant(10771050).

c⃝ 2013 Korean SIGCAM and KSCAM.

813



814 Meng Li, QiuMei Sun and HaiYun Zhou

A mapping T of C into H is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀ x, y ∈ C.

We denote by F (T ) the set of fixed points of T . If C ⊂ H is bounded, closed and
convex and T is a nonexpansive mapping of C into itself, then F (T ) is nonempty;
for instance, see [14].There are some methods for approximation of fixed points
of a nonexpansive mapping. In 2000, Moudafi [15] proved the following strong
convergence theorem.

Theorem 1.1 ([15]). Let C be a nonempty closed convex subset of a Hilbert
space H and let T be a nonexpansive mapping of C into itself such that F (T )
is nonempty. Let f be a contraction of C into itself and let {xn} be a sequence
defined as follows: x1 = x ∈ C and

xn+1 =
1

1 + εn
T (xn) +

εn
1 + εn

f(xn), (1.2)

for all n ∈ N , where {εn} ⊂ (0, 1) satisfies

lim
n→∞

εn = 0,
∞∑

n=1

εn = ∞ and lim
n→∞

| 1

εn + 1
− 1

εn
| = 0.

Then {xn} converges strongly to z ∈ F (T ), where z = PF (T )f(z) and PF (T ) is
the metric projection of H onto F (T ).

Such a method for approximation of fixed points is called the viscosity ap-
proximation method. In 2007, Takahashi and Takahashi [8] proved the following
fixed point theorem.

Theorem 1.2. Let C be a nonempty closed convex subset of H. Let ϕ be a
bifunction from C ×C to R satisfying (A1)− (A4) and let T be a nonexpansive
mapping of C into H such that F (T )∩EP (ϕ) ̸= ∅. Let f be a contraction of H
into itself and let {xn} and {un} be sequences generated by x1 ∈ H and{

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ C,

xn+1 = αnf(xn) + (1− αn)Tun.
(1.3)

for all n ∈ N, where αn ⊂ [0, 1] and rn ⊂ (0,∞) satisfy

(1) lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞,
∑∞

n=1 |αn+1 − αn| < ∞;

(2) lim inf
n→∞

rn > 0 and
∑∞

n=1 |rn+1 − rn| < ∞.

Then, {xn} and {un} converge strongly to z ∈ F (T ) ∩ EP (ϕ), where z =
PF (T )

∩
EP (ϕ)f(z).

A mapping T of C into H is called quasi-nonexpansive if

∥Tx− v∥ ≤ ∥x− v∥, ∀ (x, v) ∈ C × F (T ).

If T : C −→ H is nonexpansive and the set F (T ) of fixed points of T is nonempty,
then T is quasi-nonexpansive.
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In 2010, P.E.Maing é [16] proved the following convergence result of fixed
point for the quasi-nonexpansive mappings in Hilbert spaces.

Theorem 1.3. Let C be a nonempty closed convex subset of H, and let {xn}
be a sequence defined as follows,

x1 ∈ H and xn+1 = αnf(xn) + (1− αn)Tωxn, (1.4)

where {αn} is a slow vanishing sequence, i.e.

lim
n−→∞

αn = 0,
∞∑

n=1

αn = ∞,

ω ∈ (0, 1), f : C −→ C a contration of modulus ρ ∈ [0, 1), Tω := (1− ω)I + ωT
(I being the identity mapping on C), with two main conditions on T :
(i1) T : C −→ C is quasi-nonexpansive;
(i2) T is demiclosed on C, that is {yk} ⊂ C, yk ⇀ y weakly, (I − T )(yk) → 0
strongly ⇒ y ∈ F (T ).

Then {xn} converges strongly to the unique element z ∈ F (T ),where z =
PF (T )

∩
EP (ϕ)f(z), which equivalently solves the following variational inequality

problem:

z ∈ F (T ) and (∀v ∈ F (T )), ⟨(I − f)z, v − z⟩ ≥ 0. (1.5)

In this paper, motivated and inspired by the above results, we introduce a
new iterative algorithm in Hilbert space H. Let C be a nonempty closed convex
subset of H. Let ϕ be a bifunction from C × C to R satisfying (A1)–(A4) and
let Tω : (1− ω)I + ωT (I being the identity mapping on C) be a mapping with
T : C −→ H being quasi-nonexpansive and demi-closed on C,ω ∈ (0, 1), such
that F (T )∩EP (ϕ) ̸= ∅. Let f : H −→ H be a contraction of modulus ρ ∈ [0, 1),
and let {xn}and {un} be sequences generated by x1 ∈ H and{

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Twun,
(1.6)

for all n ∈ N , where {αn} ⊂ (0, 1), and {rn} ⊂ (0,∞) satisfy

(1) lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞; (2) lim inf
n→∞

rn > 0, Σ∞
n=1|rn+1 − rn| < ∞,

for finding a common element of the set of fixed points of a quasi-nonexpansive
mapping and the set of solutions of an equilibrium problem in Hilbert space.
Furthermore, we also proved that {xn} and {un} converge strongly to z ∈ F (T )∩
EP (ϕ), where z = PF (T )∩EP (ϕ)f(z), which equivalently solves the following
variational inequality problem:

z ∈ F (T ) ∩ EP (ϕ), and(∀v ∈ F (T ) ∩ EP (ϕ)), ⟨(I − f), v − z⟩ ≥ 0.

The results of this paper extend some previously published results, see for in-
stance [5,6].
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2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space endowed
with an inner product and its induced norm denoted by ⟨·, ·⟩ and |·|, respectively.
C is a closed convex subset of H. When {xn} is a sequence in H, xn ⇀ x implies
that xn converges weakly to x, and xn −→ x means the strong convergence. In
a real Hilbert space H, we have

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2,

for all x, y ∈ H, and λ ∈ R. Let C be a nonempty closed convex subset of H.
Then, for any x ∈ H, there exists a unique nearest point in C, denoted by PC(x),
such that

∥x− PC(x)| ≤ ∥x− y|, ∀ y ∈ C.

Such a PC is called the metric projection of H onto C. We know that PC is
nonexpansive.

For solving the equilibrium problem for a bifunction ϕ : C × C −→ R, let us
assume that ϕ satisfies the following conditions:
(A1)ϕ(x, x) = 0 for all x ∈ C;
(A2)ϕ is monotone, i.e. ϕ(x, y) + ϕ(y, x) ≤ 0 for all x, y ∈ C;
(A3)for each x, y, z ∈ C,lim

t→0
ϕ(tz + (1− t)x, y) ≤ ϕ(x, y);

(A4)for each x ∈ C, y −→ ϕ(x, y) is convex and lower semicontinous.

Lemma 2.1 ([1]). Let T be a quasi-nonexpansive mapping on C with F (T ) ̸= ∅,
and set Tω := (1 − ω)I + ωT for ω ∈ (0, 1]. Then the following statements are
reached:
(i) ⟨x− Tωx, x− v⟩ ≥ ω∥x− Tx∥2, ∀(x, v) ∈ C × F (T );
(ii) ∥Tωx− v∥2 ≤ ∥x− q∥2 − ω(1− ω)∥Tx− x∥2, ∀(x, v) ∈ C × F (T );
(iii) Tω is quasi-nonexpansive mappings;
(iv) F (T ) = F (Tω).

Lemma 2.2 ([1]). Let {Γn} be a sequence of real numbers that does not de-
crease at infinity, in the sense that there exists a subsequence {Γnj

}j≥1 of {Γn}
which satisfies Γnj < Γnj+1 for all j ≥ 1. Also consider the sequence of integers
{τ(n)}n≥n1

defined by

τ(n) = max{k ≤ n | Γk < Γk+1}.

Then {τ(n)}n≥n1 is a nondecreasing sequence verifying limn→∞ τ(n) = ∞, and
for all n ≥ n1, it holds that Γτ(n) ≤ Γτ(n)+1 and we have

Γn ≤ Γτ(n)+1. (2.1)

Lemma 2.3 ([1]). Let C be a nonempty closed convex subset of H and let ϕ be
a bifunction of C × C −→ R satisfying (A1)–(A4). Let r > 0, and x ∈ H, then
there exists z ∈ C such that

ϕ(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.
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Lemma 2.4 ([1]). Assume that ϕ : C × C −→ R satisfies (A1) − (A4). For
r > 0 and x ∈ H, define a mapping Tr : H −→ C as follows:

Tr(x) = {z ∈ C : ϕ(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

for all z ∈ H. Then, the following hold:
(1)Tr is single-valued;
(2)Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(3)F (Tr) = EP (ϕ), ∀ r > 0;
(4)EP (ϕ) is closed and convex.

Lemma 2.5 ([17]). Let {αn} be a sequence of non-negative real numbers sat-
isfying αn+1 ≤ (1 − γn)αn + δn, where {γn} ⊂ (0, 1) and {δn} ⊂ (−∞,+∞)
satisfying the condition:
(1)Σ∞

n=1γn = ∞;
(2) lim sup

n→∞

δn
γn

≤ 0, or
∑∞

n=1 |δn| < ∞.

Then lim
n→∞

αn = 0.

Lemma 2.6 ([17]). If z is solution of (1.5) with T : C −→ C demi-closed and
{yn} ⊂ C is a bounded sequence such that ∥Tyn − yn∥ −→ 0,then

lim inf
n→∞

⟨(I − f)z, yn − z⟩ ≥ 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of H. Let ϕ be a
bifunction from C ×C to R satisfying (A1)–(A4), and let Tω : (1−ω)I +ωT (I
being the identity mapping on C) be a mapping with T : C −→ H being quasi-
nonexpansive and demi-closed on C, ω ∈ (0, 1) , such that F (T ) ∩ EP (ϕ) ̸= ∅.
Let f : H −→ H be a contraction of modulus ρ ∈ [0, 1), and let {xn}and {un}
be sequences generated by x1 ∈ H and{

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ C,

xn+1 = αnf(xn) + (1− αn)Twun,
(3.1)

for all n ∈ N , where {αn} ⊂ [0, 1], and {rn} ⊂ (0,∞) satisfy
(1) lim

n→∞
αn = 0,

∑∞
n=1 αn = ∞; (2) lim inf

n→∞
rn > 0, Σ∞

n=1|rn+1 − rn| < ∞, then

{xn} and {un} converge strongly to z ∈ F (T )∩EP (ϕ), where z = PF (T )
∩

EP (ϕ)f(z),

which equivalently solves the following variational inequality problem:

z ∈ F (T ) ∩ EP (ϕ), (∀v ∈ F (T ) ∩ EP (ϕ)), ⟨(I − f), v − z⟩ ≥ 0.
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Proof. Let Q = PF (T )
∩

EP (ϕ). Then Qf is a contraction of H into itself. In fact,
there exists ρ ∈ [0, 1), such that ∥f(x) − f(y)∥ ≤ ρ∥x − y∥ for all x, y ∈ H. So
we have that

∥Qf(x)−Qf(y)∥ ≤ ∥f(x)− f(y)∥ ≤ ρ∥x− y∥, (3.2)

for all x, y ∈ H. So Qf is a contraction of H into itself. Since H is complete,
there exists a unique element z ∈ H such that z = Qf(z). Such a z ∈ H is an
element of C.

Let v ∈ F (T ) ∩ EP (ϕ), then from un = Trnxn, we have

∥un − v∥ ≤ ∥Trnxn − Trnv∥ ≤ ∥xn − v∥, ∀ x, y ∈ C, (3.3)

∥Twun−v∥2 ≤ ∥un−v∥2−w(1−w)∥Tun−u∥2 ≤ ∥un−v∥2 ≤ ∥xn−v∥2, (3.4)

for all n ∈ N . Put M = max{∥x1 − v∥, 1
1−ρ∥f(v) − v∥}. It is obvious that

∥x1 − v∥ ≤ M . Suppose ∥xn − v∥ ≤ M . Then, we have

∥xn+1 − v∥ = ∥αnf(xn) + (1− αn)Twun − v∥
≤ αn∥f(xn)− f(v)∥+ αn∥f(v)− v∥+ (1− αn)∥Twxn − v∥
≤ [αnρ+ (1− αn)]∥xn − v∥+ αn∥f(v)− v∥

= [1− αn(1− ρ)]∥xn − v∥+ αn(1− ρ)
∥f(v)− v∥

1− ρ

≤ [1− αn(1− ρ)]M + αn(1− ρ)M = M.

(3.5)

So we have that ∥xn − v∥ ≤ M for any n ∈ N and hence {xn} is bounded.
We also obtain that {un}, {Twun}, {Twxn}, {f(xn)} and {f(un)} are bounded.
Then we have

∥xn+1 − v∥2 = ∥αnf(xn) + (1− αn)Tωun − v∥2

≤ ∥αnf(xn) + (1− αn)Tωun − v∥2

≤ αn∥f(xn)− v∥2 + (1− αn)∥Tωun − v∥2.
(3.6)

By Lemma 2.1, v ∈ F (Tω), so

∥Tωun − v∥2 ≤ ∥xn − v∥2 − ω(1− ω)∥Tun − un∥2,
and (3.6) equivalently

∥xn+1 − v∥2

≤ αn∥f(xn)− v∥2 + (1− αn)(∥xn − v∥2 − ω(1− ω)∥Tun − un∥2)

≤ αn∥f(xn)− v∥2 + (1− αn)(∥xn − v∥2 − ω(1− ω)∥Tun − un∥2)

≤ αn∥f(xn)− v∥2 + (1− αn)∥xn − v∥2 − (1− αn)ω(1− ω)∥Tun − un∥2

≤ (1− αn)∥xn − v∥2 + αn∥f(xn − v)∥2 − (1− αn)ω(1− ω)∥Tun − un∥2,

(3.7)

(3.7) can be equivalently rewritten as

∥xn+1 − v∥2 − ∥xn − v∥2 + (1− αn)ω(1− ω)∥Tun − un∥2

≤ −αn∥xn − v∥2 + αn∥f(xn)− v∥2.
(3.8)
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Setting Γn = ∥xn − v∥2, we have

Γn+1 − Γn + (1− αn)w(1− w)∥Tun − un∥2

≤ αn(∥f(xn)− xn∥2 + 2⟨(f − I)xn, xn − v⟩)
≤ αn∥f(xn)− xn∥2 + 2αn⟨(f − I)xn, xn − v⟩.

(3.9)

The rest of the proof will be divided into two parts:
Case 1. Suppose that there exists n1 such that Γn := ∥xn − v∥2, n ≥ n1 is
nonincreasing, i.e. ∥xn − v∥2 ≥ ∥xn+1 − v∥2. In this situation, {Γn} is then
convergent because it is also nonnegative(hence it is bounded from below), so
that limn→∞ (Γn+1 − Γn) = 0; together with (3.9), and αn −→ 0, and the
boundness of {xn}, we obtain

lim
n→∞

∥Tun − un∥2 = 0.

Next, we show that ∥xn − un∥ −→ 0 as n −→ ∞. Let v ∈ F (T ) ∩EP (ϕ), we
have

∥un − v∥2 = ∥Trnxn − Trnv∥2 ≤ ⟨Trnxn − Trnv, xn − v⟩

= ⟨un − v, xn − v⟩ = 1

2
(∥un − v∥2 + ∥xn − v∥2 − ∥xn − un∥2),

and hence
∥un − v∥2 ≤ ∥xn − v∥2 − ∥xn − un∥2.

Therefore, from the convexity of ∥ · ∥2, we have

∥xn+1 − v∥2 = ∥αnf(xn) + (1− αn)Tωun − v∥2

≤ αn∥f(xn)− v∥2 + (1− αn)∥un − v∥2

≤ (1− αn)∥xn − v∥2 + αn∥f(xn)− v∥2 − (1− αn)∥xn − un∥2

and hence,

(1− αn)∥xn − un∥2 ≤ (1− αn)∥xn − v∥2 + αn∥f(xn)− v∥2 − ∥xn+1 − v∥2

≤ αn∥f(xn)− v∥2 − ∥xn+1 − v∥2 + ∥xn − v∥2 + αn∥xn − v∥2,
(3.10)

because that
lim

n→∞
(Γn+1 − Γn) = 0,

we obtain that
lim
n→∞

∥xn − un∥ = 0.

Next, we show that
lim sup
n→∞

⟨f(z)− z, xn − z⟩ ≤ 0,

where z = PF (T )∩EP (ϕ)f(z). To show this inequality, we choose a subsequence
{uni} of {un} such that

lim
i→∞

⟨f(z)− z, xni − z⟩ = lim sup
n→∞

⟨f(z)− z, xn − z⟩.

Since {uni} is bounded ,there exists a subsequence {unij} of {uni}, which con-
verges weakly to ε without loss of generality, we can assume that {uni} ⇀ ε.
Since ∥Tun − un∥ → 0, T is demi-closed, we known that any weak cluster-point
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of {un} belongs to F (T ). So, we get ε ∈ F (T ). Let us show ε ∈ EP (ϕ). By
un = Trn , we have

ϕ(un, y) +
1

rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ C

From (A2), we also have

1

rn
⟨y − un, un − xn⟩ ≥ ϕ(y, un)

and hence

⟨y − uni ,
uni − xni

rni

⟩ ≥ ϕ(y, uni)

since
uni

−xni

rni
−→ 0 and uni ⇀ ε, from (A4) we have ϕ(y, ε) ≤ 0, ∀ y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty+(1− t)ε. Since y ∈ C and ε ∈ C,
we have yt ∈ C, and hence ϕ(yt, ε) ≤ 0, so from (A4) we have

0 = ϕ(yt, yt) ≤ tϕ(yt, y) + (1− t)ϕ(yt , ε) ≤ tϕ(yt , y),

and hence 0 ≤ ϕ(yt, y). From (A3), we have 0 ≤ ϕ(ε, y) for all y ∈ C, and hence
ε ∈ EP (ϕ). Therefore ε ∈ F (T ) ∩ EP (ϕ). Since z = PF (T )∩EP (ϕ)f(z), we have

lim sup
n→∞

⟨f(z)−z, xn−z⟩ = lim
i→∞

⟨f(z)−z, xni −z⟩ = ⟨f(z)−z, ε−z⟩ ≤ 0. (3.11)

So we have

∥xn+1 − z∥2 = ∥αnf(xn) + (1− αn)Tωun − z∥2

≤ α2
n∥f(xn)− z∥2 + 2αn(1− αn)⟨f(xn)− z, Tωun − z⟩+ (1− αn)

2∥Tωun − z∥2

≤ α2
n∥f(xn)− z∥2 + (1− αn)

2(∥xn − z∥2 − ω(1− ω)∥Tun − un∥)
+ 2αn(1− αn)⟨f(xn)− f(z), Tωun − z⟩+ 2αn(1− αn)⟨f(z)− z, Tωun − z⟩

≤ (1− 2αn + α2
n)∥xn − z∥2 + α2

n∥f(xn)− z∥2 − (1− αn)
2ω(1− ω)∥Tun − un∥

+ 2αn(1− αn)ρ∥xn − z∥2 + 2αn(1− αn)⟨f(z)− z, Tωun − z⟩

= (1− γn)∥xn − z∥2 + δn

(3.12)

where

γn = αn[2− αn − 2ρ(1− αn)],

δn = α2
n∥f(xn)− z∥2 + 2αn(1− αn)⟨f(z)− z, Tωun − z⟩

because of
∑∞

n=1 γn = ∞, and lim supn→∞
γn

δn
≤ 0, by Lemma 2.5, we have

lim
n→∞

∥xn − z∥2 = 0.

Case 2. Suppose there exists subsequence {Γnk
}k≥0 of {Γn}n≥0, such that

{Γnk
} ≤ {Γnk+1

}, ∀k ≥ 0. In this situation, we consider the sequence of indices
{τ(n)} as defined in Lemma 2.2. It follows that Γτ(n)+1−Γτ(n) > 0, which from
(3.9) amounts to

(1− ατ(n))ω(1− ω)∥Tuτ(n) − uτ(n)∥2
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< ατ(n)∥f(xτ(n))− xτ(n)∥2 + 2ατ(n)⟨(f − I)xτ(n), xτ(n) − v⟩,
hence, by the boundedness of {xn} and αn −→ 0, we immediately obtain

lim
n→∞

∥Tuτ(n) − uτ(n)∥ = 0.

As Γτ(n)+1 − Γτ(n) > 0, which from (3.10), amounts to

lim
n→∞

∥xτ(n) − uτ(n)∥ = 0,

which from (3.11), amounts to

lim sup
n→∞

⟨f(z)− z, xτ(n) − z⟩ ≤ 0,

which from (3.12), amounts to

lim
n→∞

∥xτ(n) − z∥2 = 0,

Then, recalling that Γn ≤ Γτ(n)+1, by Lemma 2.2, we conclude that limn→∞ ∥xn−
z∥2 = 0. Following the proof of case 1 and case 2 we obtain that:
{xn} and {un} converge strongly to z ∈ F (T )∩EP (ϕ), where z = PF (T )

∩
EP (ϕ)f(z).

Which equivalently solves the following variational inequality problem:

z ∈ F (T ) ∩ EP (ϕ), and (∀v ∈ F (T ) ∩ EP (ϕ)), ⟨(I − f), v − z⟩ ≥ 0.

�

As direct consequences of Theorem 3.1, we obtain two corollaries.

Corollary 3.2. Let C be a nonempty closed convex subset of H and let Tω :
(1 − ω)I + ωT be a mapping with T : C −→ H being quasi-nonexpansive and
demi-closed on C, ω ∈ (0, 1) , such that F (T ) ̸= ∅. Let f : H −→ H be
a contraction of modulus ρ ∈ [0, 1), and let {xn} be a sequence generated by
x1 ∈ H and

xn+1 = αnf(xn) + (1− αn)TwPCxn,

for all n ∈ N , where {αn} ⊂ [0, 1], satisfy lim
n→∞

αn = 0,
∑∞

n=1 αn = ∞;

then {xn} converges strongly to z ∈ F (T ), where z = PF (T )f(z).

Proof. Put ϕ(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N in Theorem 3.1.
Then, we have un = PCxn. So, from Theorem 3.1, the sequence {xn} generated
by x1 ∈ H and

xn+1 = αnf(xn) + (1− αn)TwPCxn,

for all n ∈ N , converges strongly to z ∈ F (T ), where z = PF (T )f(z). �

Corollary 3.3. Let C be a nonempty closed convex subset of H. Let ϕ be a
bifunction from C × C to R satisfying (A1)–(A4) such that EP (ϕ) ̸= ∅. Let
f : H −→ H be a contraction of modulus ρ ∈ [0, 1), and let {xn} and {un} be
sequences generated by x1 ∈ H and{

ϕ(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀ y ∈ C,

xn+1 = αnf(xn) + (1− αn)un,
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for all n ∈ N , where {αn} ⊂ [0, 1], and {rn} ⊂ (0,∞) satisfy
(1) lim

n→∞
αn = 0,

∑∞
n=1 αn = ∞; (2) lim inf

n→∞
rn > 0, Σ∞

n=1|rn+1 − rn| < ∞,

then {xn} and {un} converge strongly to z ∈ EP (ϕ), where z = PEP (ϕ)f(z).

Proof. Put Tωx = x for all x ∈ C in Theorem 3.1. Then, from Theorem 3.1,
the sequence {xn} and {un} generated in Corollaty 3.3 converge strongly to
z ∈ EP (ϕ), where z = PEP (ϕ)f(z). �
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