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EXPONENTIALLY FITTED INTERPOLATION FORMULAS

INVOLVING FIRST AND HIGHER-ORDER DERIVATIVES

KYUNG JOONG KIM

Abstract. We construct exponentially fitted interpolation formulas using
the values of the ω-dependent function f as well as its derivatives up to the
nth order at a finite number of nodes on a closed interval Ω. The function
f is of the form,

f(x) = f1(x) cos(ωx) + f2(x) sin(ωx), x ∈ Ω,

where f1 and f2 are smooth enough to be approximated by polynomials

on Ω. Some properties of the formulas are newly found. The properties are
numerically investigated and reexamined by producing some figures.
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1. Introduction

Phenomena with oscillatory character appear in mechanics and physics. The
investigation of such phenomena may imply mathematical operations on the
function f with a frequency ω which is of the form,

f(x) = f1(x) cos(ωx) + f2(x) sin(ωx), x ∈ [a, b], (1)

where f1 and f2 are smooth enough to be approximated by polynomials. The
mathematical operations include differentiation and quadrature. The Schrődinger
equation provides a good example to explain why the operations are considered
on the f defined in (1). In the case of the Schrődinger equation, the solution
is partly described by the function in (1). See Chapter 3 of [5] for more de-
tails. Since this equation represented the starting point for exponentially fitted
techniques, Ixaru[4, 6] derived exponentially fitted formulas for differentiation,
quadrature and multistep solvers for ordinary differential equations. Such tech-
niques were further extended to solve boundary value problems [1, 2]. An error
analysis for exponentially fitted interpolation formulas was examined [7]. Also,
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extended exponentially fitted interpolation formulas were constructed and inves-
tigated at two nodes and at more than two nodes [8]. Now our current research
establishes some properties regarding exponentially fitted interpolation formulas
involving derivatives up to the nth order at a finite number of nodes.

Technically, when an interpolation formula for a function is constructed at
a finite number of nodes, consideration is usually given to the imposition of
some conditions on the formula at the given nodes. Such conditions may be
provided by the function values or its derivatives up to the nth order at the
nodes. According to the conditions selected, a variety of interpolation formulas
are generated. We will construct exponentially fitted interpolation formulas
which use not only the values of the function f but also of its derivative up to
the nth order at 2N +1 nodes. They will be denoted In

2N+1. It is instructive to
note that in building up these formulas we do not follow the standard procedure
to construct interpolation formulas. Specifically, we will not impose the kth
derivative conditions on In

2N+1 such as

dk

dxk In
2N+1 = dk

dxk f (2)

at the nodes where k = 0, 1, 2, . . . , n, so that In
2N+1 does not necessarily satisfy

(2) at the beginning of its construction. However, it will turn out that In
2N+1

satisfies (2). In fact, the results of (2) can be derived from obtaining some
properties of the coefficients of In

2N+1 at the nodes. Thus, we will focus on
producing various results regarding the coefficients of In

2N+1 at the nodes, in
particular that In

2N+1 satisfies (2).
This article is organized as follows. In Section 2, exponentially fitted in-

terpolation formulas, denoted by In
2N+1, are introduced. In Section 3, various

properties of the coefficients of In
2N+1 are shown. In Section 4, numerical results

are given to illustrate some of the characteristics of In
2N+1 when n = 1 and

N = 2.

2. Constructing In
2N+1

For the ω-dependent function f given in (1), we will investigate exponentially
fitted interpolation formulas, denoted by In

2N+1, to use not only the values of
the function f but also of its derivatives up to the nth order at 2N + 1 nodes
where n and N are positive integers. The In

2N+1 is defined by

f(x0 +Nht)

≈ In
2N+1(t) =

∑n
j=0 h

j
(∑N

r=−N αj,r(ω, h, t)f
(j)(x0 + rh)

)
(3)

where x0 is a real number, h > 0 and −1 ≤ t ≤ 1. The αj,r(ω, h, t) implies that
the coefficient αj,r depends on the values of ω, h and t. For simplicity, we shall
write αj,r in place of αj,r(ω, h, t). In (3), we denote the jth order derivative by

f (j) =
djf(x)

dxj
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and assume that f (j) is known at the nodes x0 + rh where r = −N, −N + 1,
−N + 2, . . . , N. From the formula In

2N+1, we put

T (f(x), h,V) = f(x+Nht)−
∑n

j=0 h
j
(∑N

r=−N αj,rf
(j)(x+ rh)

)
(4)

where V is a vector of the coefficients αj,r, that is V = (α0,−N , α0,−N+1, . . . ,
α0,N , α1,−N , α1,−N+1, . . . , α1,N , . . . , αn,−N , αn,−N+1, . . . , αn,N ). To find the val-
ues of the coefficients αj,r of In

2N+1, we may consider

T (xm cos(ωx), h,V) = 0 and T (xm sin(ωx), h,V) = 0 (5)

where m = 0, 1, 2, . . . . But, since sin(ωx) and cos(ωx) are linear combinations
of exp(±iωx), we will solve a system of equations satisfying

T (xm exp(±iωx), h,V) = 0, m = 0, 1, 2, . . . , (2N + 1)(n+ 1)/2− 1, (6)

where n is an odd number. Thus, the coefficients αj,r of In
2N+1 will be deter-

mined, depending on the values of ω, h and t. At this stage, we do not know
that

dk

dxk In
2N+1 = dk

dxk f, k = 0, 1, 2, . . . , n, (7)

at the nodes, because we do not impose (7) on In
2N+1 as seen in (6). Therefore,

the In
2N+1 may provide an approximating formula that fits f on [x0 −Nh, x0 +

Nh] without necessarily matching the f at the given nodes. However, as it will be
proved in Corollary 3.9, this In

2N+1 satisfies (7), and therefore In
2N+1 represents

a genuine interpolation formula. The advantage of the new formula is that, in
contrast to formulas in current use, it reproduces the oscillatory behaviour of
the interpolated f , or of discrete data with such a behaviour, according to the
case. The functions xm exp(±iωx) in (6) will be called reference functions.

In this article we consider interpolation formulas incorporating the values of
derivatives up to an odd n. For an even n, we need one more equation to obtain
a system with the same number of equations as the number of coefficients, in
addition to the reference functions xm exp(±iωx). See [4] for more details about
the reference functions to be taken. In the next section, we will see how the
values of αj,r are determined.

3. Properties of the coefficients αj,r of In
2N+1

To determine the values of αj,r of In
2N+1, let us apply f(x) = exp(±iωx) to

(4). Then we obtain

T (exp(µx), h,V) = exp(µx)ψ(µh,V)
and

T (exp(−µx), h,V) = exp(−µx)ψ(−µh,V)
(8)

where µ = iω and

ψ(u,V) = exp(Nut)−
∑n

j=0 u
j
(∑N

r=−N αj,r exp(ru)
)
. (9)
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Using (9), we put

Ψ+(Z,V) = 1
2 (ψ(u,V) + ψ(−u,V))

and
Ψ−(Z,V) = 1

2u (ψ(u,V)− ψ(−u,V))
(10)

where Z = u2 = (µh)2 = −ω2h2. We consider the case in which n = 2n1 − 1
where n1 is a positive integer. Denote α±

j,r by

α+
j,r = αj,−N−1+r + αj,N+1−r and α−

j,r = αj,−N−1+r − αj,N+1−r (11)

where j = 0, 1, 2, . . . , n and r = 1, 2, 3, . . . , N. Then we can show Lemma 3.1 and
Lemma 3.2.

Lemma 3.1. Ψ+ is given by

Ψ+(Z,V)
= η−1(N

2Zt2)

+
∑n1

β=1

[
−
∑N

r=1 α
+
2(β−1),rZ

β−1η−1((N + 1− r)2Z)− α2(β−1),0Z
β−1

+
∑N

r=1 α
−
2β−1,r(N + 1− r)Zβη0((N + 1− r)2Z)

]
.

(12)

Proof. Use the definition ψ of (9) and see Appendix (or Section 3.4 of [3]) for
the definition of ηs where s = −1, 0. �

Similarly as in Lemma 3.1, we have

Lemma 3.2. Ψ− is given by

Ψ−(Z,V)
= Ntη0(N

2Zt2)

+
∑n1

β=1

[∑N
r=1 α

−
2(β−1),r(N + 1− r)Zβ−1η0((N + 1− r)2Z)

−
∑N

r=1 α
+
2β−1,rZ

β−1η−1((N + 1− r)2Z)− α2β−1,0Z
β−1

]
.

(13)

Proof. The same arguments as in the Proof of Lemma 3.1 are applied. �

Also, using differentiation for the Ixaru’s function ηs such as

d

dZ
ηs(Z) =

1

2
ηs+1(Z), s = −1, 0, 1, . . . , (14)

which is given in Appendix (or Section 3.4 of [3]), we have

Lemma 3.3. For j, k = 1, 2, 3, . . . ,

dj

dZj

(
Zkηa((N + 1− r)2Z)

)
=(

1
2

)j [∑j−1
m=0

(
j
m

)
2j−m(N + 1− r)2mk(k − 1)...(k − (j − (m+ 1)))

·Zk−(j−m)ηm+a((N + 1− r)2Z)
+(N + 1− r)2jZkηj+a((N + 1− r)2Z)

]
,

(15)

where r = 1, 2, 3, . . . , N and a = −1 or 0.
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Proof. The conclusion is followed by repeated application of the Product Rule
for differentiation with respect to Z. For example, the Product Rule says

d
dZ

(
Zkηa((N + 1− r)2Z)

)
= d

dZ

(
Zk

)
ηa((N + 1− r)2Z) + Zk d

dZ

(
ηa((N + 1− r)2Z)

)
= kZk−1ηa((N + 1− r)2Z) + 1

2 (N + 1− r)2Zkηa+1((N + 1− r)2Z).

�

Then exponentially fitted techniques which were explained in [4] suggest that
(6) is equivalent to a system of equations,

dj

dZj Ψ
+(Z,V) = 0, dj

dZj Ψ
−(Z,V) = 0 (16)

where j = 0, 1, 2, . . . , n1(2N+1)−1. Note that (2N+1)(n+1)/2−1 = n1(2N+
1) − 1 since n = 2n1 − 1. By applying Lemma 3.1 - 3.3 to (16), the first and
second equations of (16) become

(Nt)2jηj−1(N
2Zt2) =∑n1

β=1

[∑N
r=1 α

+
2(β−1),r

[∑β−2
k=0 (j(j − 1) . . . (j − (β − 1− (k + 1)))

·2β−1−k(N + 1− r)2j−2(β−1−k)
(
β−1
k

)
Zkηj−(β−1−k)−1((N + 1− r)2Z)

)
+(N + 1− r)2jZβ−1ηj−1((N + 1− r)2Z)

]
+α2(β−1),02

j dj

dZjZ
β−1

−
∑N

r=1 α
−
2β−1,r

[∑β−1
k=0

(
j(j − 1) . . . (j − (β − (k + 1)))2β−k

·(N + 1− r)2j−2(β−k)+1
(
β
k

)
Zkηj−(β−k)((N + 1− r)2Z)

)
+(N + 1− r)2j+1Zβηj((N + 1− r)2Z)

] ]

(17)

and

(Nt)2j+1ηj(N
2Zt2) =∑n1

β=1

[
−
∑N

r=1 α
−
2(β−1),r

[∑β−2
k=0 (j(j − 1) . . . (j − (β − 1− (k + 1)))

·2β−1−k(N + 1− r)2j−2(β−1−k)+1
(
β−1
k

)
Zkηj−(β−1−k)((N + 1− r)2Z)

)
+(N + 1− r)2j+1Zβ−1ηj((N + 1− r)2Z)

]
+
∑N

r=1 α
+
2β−1,r

[∑β−2
k=0

(
j(j − 1) . . . (j − (β − 1− (k + 1)))2β−1−k

·(N + 1− r)2j−2(β−1−k)
(
β−1
k

)
Zkηj−(β−1−k)−1((N + 1− r)2Z)

)
+(N + 1− r)2jZβ−1ηj−1((N + 1− r)2Z)

]
+α2β−1,02

j dj

dZjZ
β−1

]
,

(18)

respectively. Note that, for j = 0, (17) and (18) are equivalent to

Ψ+(Z,V) = 0 and Ψ−(Z,V) = 0

where Ψ+ and Ψ− are given in (12) and (13). Now we have two systems of linear
equations in α±

j,r and αj,0. One is associated with

dj

dZj Ψ
+(Z,V) = 0, j = 0, 1, 2, . . . , n1(2N + 1)− 1. (19)
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The other is associated with

dj

dZj Ψ
−(Z,V) = 0, j = 0, 1, 2, . . . , n1(2N + 1)− 1. (20)

Since (19), equivalently (17), is linear in α+
2(β−1),r, α2(β−1),0 and α−

2β−1,r, it is

possible to arrange it into a matrix equation,

Mn,+
2N+1X

n,+
2N+1 = Y n,+

2N+1, (21)

where Xn,+
2N+1 and Y n,+

2N+1 are both column vectors and Mn,+
2N+1 is a matrix. In

detail, Xn,+
2N+1 is a column vector consisting of entries α+

2(β−1),r, α2(β−1),0 and

α−
2β−1,r. That is

Xn,+
2N+1 =

[
A+

0 , α0,0,A−
1 ,A

+
2 , α2,0,A−

3 , . . . ,A
+
2n1−2, α2n1−2,0,A−

2n1−1

]T
(22)

where, for β = 1, 2, . . . , n1,

A+
2β−2 = [α+

2β−2,r : 1 ≤ r ≤ N ] and A−
2β−1 = [α−

2β−1,r : 1 ≤ r ≤ N ]. (23)

A few words should be said about the notations in (22) and (23). We use the
notation [aj,r : 1 ≤ r ≤ N ] to denote a vector with N entries [aj,1, aj,2, ..., aj,N ].
Also, if more than two vectors are placed inside a pair of brackets, we will omit
all internal brackets except for the far left and right brackets to make a vector.
For example, let us consider a case of Xn,+

2N+1 in (22) with n = 1 (equivalently,

n1 = 1) and denote it by X1,+
2N+1. From the definitions of A+

2β−2 and A−
2β−1 in

(23), the X1,+
2N+1 is expressed by

X1,+
2N+1 =

[
A+

0 , α0,0,A−
1

]T
=

[
[α+

0,r : 1 ≤ r ≤ N ], α0,0, [α
−
1,r : 1 ≤ r ≤ N ]

]T
=

[
[α+

0,1, α
+
0,2, . . . , α

+
0,N ], α0,0, [α

−
1,1, α

−
1,2, . . . , α

−
1,N ]

]T
.

Then we omit all internal brackets except for the far left and right brackets in
the above to make a vector[

α+
0,1, α

+
0,2, . . . , α

+
0,N , α0,0, α

−
1,1, α

−
1,2, . . . , α

−
1,N

]T
. (24)

Thus we regard X1,+
2N+1 as a vector in (24). Also, we denote M(u, v) and Y (u)

by the (u, v) entry of a matrix M and the uth entry of a vector Y, respectively.

Now, all entries of Mn,+
2N+1 and Y n,+

2N+1 in (21) are obtained from (17).

Theorem 3.4. For j = 0, 1, 2, . . . , n1(2N + 1) − 1, β = 1, 2, 3, . . . , n1 and r =

1, 2, 3, . . . , N, the matrix Mn,+
2N+1 and column vector Y n,+

2N+1 satisfy

(i): the (j + 1, (2N + 1)(β − 1) + r) entry of Mn,+
2N+1 is given by

Mn,+
2N+1(j + 1, (2N + 1)(β − 1) + r) =∑β−2
k=0

[
j(j − 1) . . . (j − (β − 1− (k + 1)))2β−1−k

·(N + 1− r)2j−2(β−1−k)
(
β−1
k

)
Zkηj−(β−1−k)−1((N + 1− r)2Z)

]
+(N + 1− r)2jZβ−1ηj−1((N + 1− r)2Z),
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(ii): the (j + 1, (2N + 1)β −N) entry of Mn,+
2N+1 is given by

Mn,+
2N+1(j + 1, (2N + 1)β −N) = 2j dj

dZjZ
β−1,

(iii): the (j + 1, (2N + 1)β −N + r) entry of Mn,+
2N+1 is given by

Mn,+
2N+1(j + 1, (2N + 1)β −N + r) =

−
[∑β−1

k=0

[
j(j − 1) . . . (j − (β − (k + 1)))2β−k

·(N + 1− r)2j−2(β−k)+1
(
β
k

)
Zkηj−(β−k)((N + 1− r)2Z)

]
+(N + 1− r)2j+1Zβηj((N + 1− r)2Z)

]
,

(iv): the (j + 1)th entry of Y n,+
2N+1 is given by

Y n,+
2N+1(j + 1) = (Nt)2jηj−1(N

2Zt2).

Thus Xn,+
2N+1 consisting of α+

2(β−1),r, α2(β−1),0 and α−
2β−1,r can be determined

by solving (21) with the results of Theorem 3.4. Similarly as in (21), (20)
(equivalently (18)) can be replaced by another matrix equation,

Mn,−
2N+1X

n,−
2N+1 = Y n,−

2N+1 (25)

because it is linear in α−
2(β−1),r, α

+
2β−1,r and α2β−1,0. In (25), Xn,−

2N+1 is a column

vector whose entries are α−
2(β−1),r, α

+
2β−1,r and α2β−1,0. It is denoted by

Xn,−
2N+1 =

[
A−

0 ,A
+
1 , α1,0,A−

2 ,A
+
3 , α3,0, . . . ,A−

2n1−2,A
+
2n1−1, α2n1−1,0

]T
(26)

where, for β = 1, 2, 3, . . . , n1,

A−
2β−2 = [α−

2β−2,r : 1 ≤ r ≤ N ] and A+
2β−1 = [α+

2β−1,r : 1 ≤ r ≤ N ].

In the following, all entries of Mn,−
2N+1 and Y n,−

2N+1 in (25) are obtained from (18):

Theorem 3.5. For j = 0, 1, 2, . . . , n1(2N + 1) − 1, β = 1, 2, 3, . . . , n1 and r =

1, 2, 3, . . . , N, the matrix Mn,−
2N+1 and column vector Y n,−

2N+1 satisfy

(i): the (j + 1, (2N + 1)(β − 1) + r) entry of Mn,−
2N+1 is given by

Mn,−
2N+1(j + 1, (2N + 1)(β − 1) + r) =

−
[∑β−2

k=0

[
j(j − 1) . . . (j − (β − 1− (k + 1)))2β−1−k

·(N + 1− r)2j−2(β−1−k)+1
(
β−1
k

)
Zkηj−(β−1−k)((N + 1− r)2Z)

]
+(N + 1− r)2j+1Zβ−1ηj((N + 1− r)2Z)

]
,

(ii): the (j + 1, (2N + 1)(β − 1) +N + r) entry of Mn,−
2N+1 is given by

Mn,−
2N+1(j + 1, (2N + 1)(β − 1) +N + r) =∑β−2
k=0

[
j(j − 1) . . . (j − (β − 1− (k + 1)))2β−1−k

·(N + 1− r)2j−2(β−1−k)
(
β−1
k

)
Zkηj−(β−1−k)−1((N + 1− r)2Z)

]
+(N + 1− r)2jZβ−1ηj−1((N + 1− r)2Z),
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(iii): the (j + 1, (2N + 1)β) entry of Mn,−
2N+1 is given by

Mn,−
2N+1(j + 1, (2N + 1)β) = 2j dj

dZjZ
β−1,

(iv): the (j + 1)th entry of Y n,−
2N+1 is given by

Y n,−
2N+1(j + 1) = (Nt)2j+1ηj(N

2Zt2).

Thus, Xn,−
2N+1 whose entries are α−

2(β−1),r, α
+
2β−1,r and α2β−1,0 is also deter-

mined by solving (25) with the results of Theorem 3.5. By the way, our main
task in this article is to show that the properties of In

2N+1 such as

dk

dxk In
2N+1(t) = dk

dxk f(x), k = 0, 1, 2, . . . , n,

are satisfied at the nodes where x = x0+Nht. It is necessary to obtain first and
higher-order derivatives of the coefficients of In

2N+1 up to the nth order at the
nodes. This can be achieved by calculating first and higher-order derivatives of

Y n,+
2N+1 and Y n,−

2N+1 (27)

with respect to t at t = ±N+1−r
N or 0 where r = 1, 2, 3, . . . , N. Therefore, we

first consider differentiating Y n,+
2N+1 with respect to t.

Lemma 3.6. For β = 1, 2, 3, . . . , n1 and r = 1, 2, 3, . . . , N,

(i):[
d2(β−1)

dt2(β−1)Y
n,+
2N+1( · )

]
t=±N+1−r

N

= N2(β−1)Mn,+
2N+1( · , (2N + 1)(β − 1) + r),

(ii):[
d2(β−1)

dt2(β−1)Y
n,+
2N+1( · )

]
t=0

= N2(β−1)Mn,+
2N+1( · , (2N + 1)β −N),

(iii):[
d2β−1

dt2β−1Y
n,+
2N+1( · )

]
t=−N+1−r

N

= N2β−1Mn,+
2N+1( · , (2N + 1)β −N + r),

(iv):[
d2β−1

dt2β−1Y
n,+
2N+1( · )

]
t=N+1−r

N

= −
[

d2β−1

dt2β−1Y
n,+
2N+1( · )

]
t=−N+1−r

N

,

(v): [
d2β−1

dt2β−1Y
n,+
2N+1( · )

]
t=0

= O.

Proof. Using (iv) of Theorem 3.4, (14) and

η1(N
2Zt2) = η−1(N

2Zt2)−η0(N
2Zt2)

N2Zt2 , (28)

we have
d2β−2

dt2β−2Y
n,+
2N+1(1) = N2β−2Zβ−1η−1(N

2Zt2)
and

d2β−1

dt2β−1Y
n,+
2N+1(1) = N2β−1(Nt)Zβη0(N

2Zt2)

(29)
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where β = 1, 2, 3, . . . , n1. From the Appendix, we know that

ηj(N
2Zt2) =

ηj−2(N
2Zt2)−(2j−1)ηj−1(N

2Zt2)
N2Zt2 , j = 1, 2, 3, . . . . (30)

In fact, (28) comes from j = 1 in (30). Again, using (iv) of Theorem 3.4 and
(14),

d
dtY

n,+
2N+1(j + 1) = d

dt (Nt)
2jηj−1(N

2Zt2)
= N

[
2j(Nt)2j−1ηj−1(N

2Zt2) + (Nt)2j+1Zηj(N
2Zt2)

]
.

(31)

Then, for j ≥ 1,

d2

dt2Y
n,+
2N+1(j + 1) = d

dt

(
d
dtY

n,+
2N+1(j + 1)

)
= N d

dt

[
(Nt)2j−1

(
ηj−2(N

2Zt2) + ηj−1(N
2Zt2)

)]
(by (30))

= N2
[
(2j − 1)(Nt)2j−2

(
ηj−2(N

2Zt2) + ηj−1(N
2Zt2)

)
+(Nt)2j

(
Zηj−1(N

2Zt2) + Zηj(N
2Zt2)

)]
= N2

[
2j(Nt)2j−2ηj−2(N

2Zt2) + (Nt)2jZηj−1(N
2Zt2)

]
(by (30)).

(32)

Similarly as in (32), for j ≥ 1,

d3

dt3Y
n,+
2N+1(j + 1) = d

dt

(
d2

dt2Y
n,+
2N+1(j + 1)

)
= N3

[
j(j − 1)22(Nt)2j−3ηj−2(N

2Zt2)
+(j)2(Nt)2j−12Zηj−1(N

2Zt2) + (Nt)2j+1Z2ηj(N
2Zt2)

]
.

(33)

In general, for 1 ≤ β ≤ n1 and j ≥ 1,

d2(β−1)

dt2(β−1)Y
n,+
2N+1(j + 1) =

N2(β−1)
[∑β−2

k=0 j(j − 1)(j − 2) . . . (j − (β − 1− (k + 1)))

·2β−1−k(Nt)2(j−(β−1−k))
(
β−1
k

)
Zkηj−(β−1−k)−1(N

2Zt2)
+(Nt)2jZβ−1ηj−1(N

2Zt2)
] (34)

and

d2β−1

dt2β−1 Y
n,+
2N+1(j + 1) =

N2β−1
[∑β−1

k=0 j(j − 1)(j − 2) . . . (j − (β − (k + 1)))

·2β−k(Nt)2(j−(β−k))+1
(
β
k

)
Zkηj−(β−k)(N

2Zt2) + (Nt)2j+1Zβηj(N
2Zt2)

] (35)

where ηs ≡ 0 for s = −2,−3,−4, . . . . Using the first equation of (29) and (34),
(i) is obtained from (i) of Theorem 3.4. Likewise, using the second equation of
(29) and (35), (iii) is obtained from (iii) of Theorem 3.4. Also, (iv) is shown by
(iii) and (35). To get the results of (ii), (34) is rearranged by

d2(β−1)

dt2(β−1) Y
n,+
2N+1(j + 1) = N2(β−1)

[∑β
m=2 j(j − 1)(j − 2) . . . (j − (m− 2))

·2m−1(Nt)2(j−(m−1))
(
β−1
β−m

)
Zβ−mηj−m(N2Zt2)

+(Nt)2jZβ−1ηj−1(N
2Zt2)

]
.

(36)

The right hand side of (36) contains β terms and each term contains a factor Nt
with an exponent. If the exponent of Nt is negative (equivalently if m > j +1),
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the related term vanishes. Therefore, the right hand side of (36) is continuous
at t = 0. From this fact, we can obtain[

d2(β−1)

dt2(β−1)Y
n,+
2N+1(j + 1)

]
t=0

(37)

by

limt→0

[
d2(β−1)

dt2(β−1)Y
n,+
2N+1(j + 1)

]
.

Thus, for 1 ≤ j ≤ β − 1, (36) says that

(37) = N2(β−1)j(j − 1)(j − 2) . . . (1)2j
(

β−1
β−1−j

)
Zβ−(j+1)

= N2(β−1)2j(β − 1)(β − 2)(β − 3) . . . (β − j)Zβ−(j+1)

because only one term survives in the right hand side of (36). In general, we
have [

d2(β−1)

dt2(β−1)Y
n,+
2N+1(j + 1)

]
t=0

= N2(β−1)Zβ−1 if j = 0,
N2(β−1)2j(β − 1)(β − 2) . . . (β − j)Zβ−(j+1) if 1 ≤ j ≤ β − 1,
0 if j ≥ β.

(38)

Note that the right hand side of (38) is expressed by

N2(β−1)2j
dj

dZj
Zβ−1

where j = 0, 1, 2, . . . . Using (ii) of Theorem 3.4,[
d2(β−1)

dt2(β−1)Y
n,+
2N+1(j + 1)

]
t=0

= N2(β−1)Mn,+
2N+1(j + 1, (2N + 1)β −N).

Thus, (ii) is proved. Similarly as done by (34) to prove (ii), (v) is proved by
(35). �

Similarly as in Lemma 3.6, Mn,−
2N+1 and Y n,−

2N+1 are closely related as follows.

Lemma 3.7. For β = 1, 2, 3, . . . , n1 and r = 1, 2, 3, . . . , N,

(i):[
d2(β−1)

dt2(β−1)Y
n,−
2N+1( · )

]
t=−N+1−r

N

= N2(β−1)Mn,−
2N+1( · , (2N + 1)(β − 1) + r),

(ii):[
d2(β−1)

dt2(β−1)Y
n,−
2N+1( · )

]
t=N+1−r

N

= −
[

d2(β−1)

dt2(β−1)Y
n,−
2N+1( · )

]
t=−N+1−r

N

,

(iii): [
d2(β−1)

dt2(β−1)Y
n,−
2N+1( · )

]
t=0

= O,

(iv):[
d2β−1

dt2β−1Y
n,−
2N+1( · )

]
t=±N+1−r

N

= N2β−1Mn,−
2N+1( · , (2N + 1)(β − 1) +N + r),
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(v): [
d2β−1

dt2β−1Y
n,−
2N+1( · )

]
t=0

= N2β−1Mn,−
2N+1( · , (2N + 1)β).

Proof. The proof proceeds similarly as in the proof of Lemma 3.6 but by using
Theorem 3.5 instead of Theorem 3.4. In fact, as done with (34) and (35) in
Lemma 3.6, this can be done by

d2(β−1)

dt2(β−1)Y
n,−
2N+1(j + 1) =

N2(β−1)
[∑β−2

k=0 j(j − 1)(j − 2) . . . (j − (β − 1− (k + 1)))

·2β−1−k(Nt)2(j−(β−1−k))+1
(
β−1
k

)
Zkηj−(β−1−k)(N

2Zt2)
+(Nt)2j+1Zβ−1ηj(N

2Zt2)
]

and
d2β−1

dt2β−1Y
n,−
2N+1(j + 1) =

N2β−1
[∑β−2

k=0 j(j − 1)(j − 2) . . . (j − (β − 1− (k + 1)))

·2β−1−k(Nt)2(j−(β−1−k))
(
β−1
k

)
Zkηj−(β−1−k)−1(N

2Zt2)
+(Nt)2jZβ−1ηj−1(N

2Zt2)
]
.

�

Now we are ready for obtaining first and higher-order derivatives of the coef-
ficients αj,r of In

2N+1 as follows.

Theorem 3.8. For m, j = 0, 1, 2, . . . , n and q, r = −N, −N+1, −N+2, . . . , N,[
dm

dtm
αj,r

]
t= q

N

=

{
Nm, if j = m and r = q,
0, otherwise.

Proof. To solve the two linear systems,

Mn,+
2N+1X

n,+
2N+1 = Y n,+

2N+1 and Mn,−
2N+1X

n,−
2N+1 = Y n,−

2N+1, (39)

apply the Cramer’s Rule to the linear systems, respectively, by using Theorem 3.4
and 3.5. Then the mth derivatives of Xn,+

2N+1 and Xn,−
2N+1, equivalently the mth

derivatives of α±
j,k and αj,0, with respect to t at t = q/N are derived from

Lemma 3.6 and 3.7 where m, j = 0, 1, 2, . . . , n, k = 1, 2, 3, . . . , N, and q =
−N,−N + 1, . . . , N. It is known that the determinant of a square matrix M is
equal to 0 if two columns (or rows) of the matrixM are equal. This determinant
property is used to derive themth derivatives of α±

j,k and αj,0 when the Cramer’s

Rule is applied. Finally, use (11) to get the mth derivative of αj,r where j =
0, 1, 2, . . . , n, r = −N,−N + 1, . . . , N and r ̸= 0. For easy understanding, let us
consider the case of n = 1 and N = 1 in (39). From Theorem 3.4 and (22), the

first equation of (39), M1,+
3 X1,+

3 = Y 1,+
3 , becomes η−1(Z) 1 −Zη0(Z)

η0(Z) 0 −(1 · 2η0(Z) + Zη1(Z))
η1(Z) 0 −(2 · 2η1(Z) + Zη2(Z))

 α+
0,1

α0,0

α−
1,1

 =

 η−1(Zt
2)

t2η0(Zt
2)

t4η1(Zt
2)

 . (40)
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Lemma 3.6 says that

(i)
[
Y 1,+
3 ( · )

]
t=±1

=M1,+
3 ( · , 1), (ii)

[
Y 1,+
3 ( · )

]
t=0

=M1,+
3 ( · , 2),

(iii)
[

d
dtY

1,+
3 ( · )

]
t=−1

=M1,+
3 ( · , 3),

(iv)
[

d
dtY

1,+
3 ( · )

]
t=1

= −M1,+
3 ( · , 3), (v)

[
d
dtY

1,+
3 ( · )

]
t=0

= O.

(41)

Then, by applying the Cramer’s Rule to (40), we have

(i) α+
0,1 = 1 at t = −1, 1,

α+
0,1 = 0 at t = 0, d

dtα
+
0,1 = 0 at t = −1, 0, 1,

(ii) α0,0 = 1 at t = 0,
α0,0 = 0 at t = −1, 1, d

dtα0,0 = 0 at t = −1, 0, 1,
(iii) d

dtα
−
1,1 = 1 at t = −1, d

dtα
−
1,1 = −1 at t = 1,

α−
1,1 = 0 at t = −1, 0, 1, d

dtα
−
1,1 = 0 at t = 0.

(42)

From Theorem 3.5 and (26), the second equation of (39), M1,−
3 X1,−

3 = Y 1,−
3 ,

becomes  −η0(Z) η−1(Z) 1
−η1(Z) η0(Z) 0
−η2(Z) η1(Z) 0

 α−
0,1

α+
1,1

α1,0

 =

 tη0(Zt
2)

t3η1(Zt
2)

t5η2(Zt
2)

 . (43)

Lemma 3.7 says that

(i)
[
Y 1,−
3 ( · )

]
t=−1

=M1,−
3 ( · , 1), (ii)

[
Y 1,−
3 ( · )

]
t=1

= −M1,−
3 ( · , 1),

(iii)
[
Y 1,−
3 ( · )

]
t=0

= O, (iv)
[

d
dtY

1,−
3 ( · )

]
t=±1

=M1,−
3 ( · , 2),

(v)
[

d
dtY

1,−
3 ( · )

]
t=0

=M1,−
3 ( · , 3).

(44)

Then, by applying the Cramer’s Rule to (43), we have

(i) α−
0,1 = 1 at t = −1, α−

0,1 = −1 at t = 1,

α−
0,1 = 0 at t = 0, d

dtα
−
0,1 = 0 at t = −1, 0, 1,

(ii) d
dtα

+
1,1 = 1 at t = −1, 1,

α+
1,1 = 0 at t = −1, 0, 1, d

dtα
+
1,1 = 0 at t = 0,

(iii) d
dtα1,0 = 1 at t = 0,
α1,0 = 0 at t = −1, 0, 1, d

dtα1,0 = 0 at t = −1, 1.

(45)

Using (11), we get

α0,−1 = (α+
0,1 + α−

0,1)/2, α0,1 = (α+
0,1 − α−

0,1)/2,

α1,−1 = (α+
1,1 + α−

1,1)/2, α1,1 = (α+
1,1 − α−

1,1)/2.
(46)

Thus, (42) and (45) give

(i) α0,−1 = 1 at t = −1, α0,−1 = 0 at t = 0, 1,
α0,1 = 1 at t = 1, α0,1 = 0 at t = −1, 0,

(ii) α1,−1 = 0 at t = −1, 0, 1, α1,1 = 0 at t = −1, 0, 1
(47)
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and

(i) d
dtα0,−1 = 0 at t = −1, 0, 1, d

dtα0,1 = 0 at t = −1, 0, 1,
(ii) d

dtα1,−1 = 1 at t = −1, d
dtα1,−1 = 0 at t = 0, 1,

d
dtα1,1 = 1 at t = 1, d

dtα1,1 = 0 at t = −1, 0.
(48)

From (ii) of (42), (iii) of (45) and (47) and (48), we conclude that, form, j = 0, 1
and q, r = −1, 0, 1,[

dm

dtm
αj,r

]
t=q

=

{
1, if j = m and r = q,
0, otherwise.

Similarly, other cases are proved. �

Corollary 3.9. For m = 0, 1, 2, . . . , n and q = −N,−N + 1, −N + 2, . . . , N,[
dm

dxm In
2N+1(t)

]
x=x0+qh

=
[
dmf(x)
dxm

]
x=x0+qh

(49)

where x = x0 +Nht.

Proof. Theorem 3.8 says that[
dm

dxm In
2N+1(t)

]
x=x0+qh

=
[
dm

dtm In
2N+1(t)

]
t= q

N

· 1
(Nh)m

=
[∑n

j=0 h
j
(∑N

r=−N

[
dm

dtmαj,r

]
t= q

N

f (j)(x0 + rh)
)]

· 1
(Nh)m

= hm
(∑N

r=−N

[
dm

dtmαm,r

]
t= q

N

f (m)(x0 + rh)
)
· 1
(Nh)m

= hm
([

dm

dtmαm,q

]
t= q

N

f (m)(x0 + qh)
)
· 1
(Nh)m

= hm
(
Nmf (m)(x0 + qh)

)
· 1
(Nh)m

= f (m)(x0 + qh) =
[
dmf(x)
dxm

]
x=x0+qh

.

�

Corollary 3.9 states that themth derivative of In
2N+1 with respect to x is equal

to themth derivative of f with respect to x at the nodes wherem = 0, 1, 2, . . . , n.

4. Numerical results

To illustrate numerical results, let us choose an example function f on the
domain [a, b] = [−1, 1],

f(x) = (1 + 3x+ 5x2 + 7x3 + 9x4 + 11x5) sin(ωx+ 1), ω = 35, (50)

which is of the form (1) with f1(x) = sin(1)(1 + 3x + 5x2 + 7x3 + 9x4 + 11x5)
and f2(x) = cos(1)(1 + 3x+ 5x2 + 7x3 + 9x4 + 11x5). For this function, we will
investigate In

2N+1 in (3) with the case of N = 2 and n = 1 when x0 = 0 and

h = 1/2. Let us denote it by I1
5 . Thus, I1

5 is expressed by

I1
5 (t) =

∑2
r=−2 α0,rf(r/2) + h

∑2
r=−2 α1,r

[
df(x)
dx

]
x=r/2

. (51)
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Figure 1. Comparison between f(x) and EF on [−1, 1].
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Figure 2. Comparison between f(x) and EF near x = −1.
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Note that I1
5 uses not only pointwise values of the function f but also of its

first derivative at five nodes (equivalently, at x = −1,−1/2, 0, 1/2, 1) on [a, b] =
[−1, 1]. As explained in Section 2, I1

5 is constructed to be exact for f(x) =
xm exp(±iωx) where m = 0, 1, 2, 3, 4. Therefore, some discrepancies between the
example function f and I1

5 may happen because f1 and f2 include constant×x5.
The example function f is compared with I1

5 on the domain [−1, 1] in Figure 1
where the solid and dotted lines are represented by f and I1

5 (=EF), respectively.
Obviously, Figure 1 shows some discrepancies between the two lines. Now, let
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us magnify the two lines in Figure 1 near x = −1,−1/2. Thus, Figure 2 and 3
are provided to compare the two lines near x = −1 and −1/2, respectively. In
details, Fig. 2 shows that I1

5 has the same value as f at x = −1 and it does the
same slope as f at the same node. The same argument as in Figure 2 is applied
for Figure 3 at x = −1/2. In fact, it is numerically confirmed that I1

5 passes
through f at the remaining nodes, x = 0, 1/2, 1, and it has the same slope as f
at the same nodes. In other words, the behaviors of I1

5 at the nodes are in full
agreement with the theoretical results given by (49). All computational results
in the figures are obtained from Matlab[9].

In this article, we concentrated on obtaining theoretical results given by (49)
regarding In

2N+1 at the nodes. Finally, we may suggest another investigation to
construct exponentially fitted interpolation formulas at unequally spaced nodes.
Maybe our study will afford a good foundation for the investigation.

Figure 3. Comparison between f(x) and EF near x = −1/2.
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Figure Captions.

(1): The notation ‘EF’ in Figure 1− 3 is used to denote I1
5 .

(2): In Figure 1-3, ω = 35 and
f(x) = (1 + 3x+ 5x2 + 7x3 + 9x4 + 11x5) sin(ωx+ 1).

Figure 1: Comparison between f(x) and EF on [−1, 1].
Figure 2: Comparison between f(x) and EF near x = −1.
Figure 3: Comparison between f(x) and EF near x = −1/2.

Appendix

1. Define functions ηs by
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(i):

η−1(Z) =

{
cos(|Z|1/2) if Z < 0
cosh(Z1/2) if Z ≥ 0,

(ii):

η0(Z) =

 sin(|Z|1/2)/|Z|1/2 if Z < 0
1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0,

(iii): for Z ̸= 0 let

ηs(Z) = (ηs−2(Z)− (2s− 1)ηs−1(Z))/Z (s = 1, 2, 3, . . .),

for Z = 0 let

ηs(0) =
2ss!

(2s+ 1)!
(s = 1, 2, 3, . . .).

2. The functions defined above satisfy the following two properties.
(i) Power series:

ηs(Z) = 2s
∞∑
q=0

gsqZ
q/(2q + 2s+ 1)!

with

gsq =

{
1 if s = 0
(q + 1)(q + 2) . . . (q + s) if s = 1, 2, 3, . . . .

(ii) Differentiation with respect to Z:

d

dZ
ηs(Z) =

1

2
ηs+1(Z), s = −1, 0, 1, . . . .
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