MIRROR d-ALGEBRAS ${ }^{\dagger}$

KEUM SOOK SO AND YOUNG HEE KIM*

Abstract

In this paper we investigate necessary conditions for the mirror algebra $(M(X), \oplus,(0,0))$ to be a d-algebra (having the condition (D5), resp.) when $(X, *, 0)$ is a d-algebra (having the condition ($D 5$), resp.). Moreover, we obtain the necessary conditions for $M(X)$ of a d^{*}-algebra X to be a d^{*}-algebra.

AMS Mathematics Subject Classification : 06F35.
Key word and phrases : (mirror) $d\left(d^{*}\right)$-algebra, exchange function.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras [7, 8]. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. We refer useful textbooks for $B C K / B C I$-algebra to [6, 9, 15]. J. Neggers et al. [10] introduced the notion of Q-algebras which is a generalization of $B C K / B C I / B C H$-algebras, and obtained several properties and discussed quadratic Q-algebras. S. S. Ahn and H. S. Kim [1] introduced the notion of $Q S$-algebras, and S. S. Ahn et al. [2] studied positive implicativity in Q-algebras and discussed some relations between $R-(L-)$ maps and positive implicativity. J. Neggers and H. S. Kim introduced the notion of d-algebras which is another useful generalization of $B C K$-algebras, and then investigated several relations between d-algebras and $B C K$-algebras as well as several other relations between d-algebras and oriented digraphs [13]. After that some further aspects were studied [3, 4, 11, 12]. P. J. Allen et al. [5] introduced the notion of mirror image of a given algebras, and obtained some interesting properties: a mirror algebra of a d-algebra is also a d-algebra, and a mirror algebra of an implicative $B C K$-algebra is a left L-up algebra. Recently, K. S. So [14] investigated how to construct mirror Q-algebras of a Q-algebra, and she obtained the necessary conditions for $M(X)$ to be a Q-algebra.

[^0]In this paper we investigate necessary conditions for the mirror algebra $(M(X), \oplus,(0,0))$ to be a d-algebra (having the condition ($D 5$), resp.) when $(X, *, 0)$ is a d-algebra (having the condition ($D 5$), resp.). Moreover, we obtain the necessary conditions for $M(X)$ of a d^{*}-algebra X to be a d^{*}-algebra.

2. Preliminaries

An (ordinary) d-algebra [13] is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(D1) $x * x=0$,
(D2) $0 * x=0$,
(D3) $x * y=0$ and $y * x=0$ imply $x=y$ for all $x, y \in X$.
A $B C K$-algebra is a d-algebra X satisfying the following additional axioms:
(D4) $(x * y) *(x * z)) *(z * y)=0$,
(D5) $(x *(x * y)) * y=0$ for all $x, y, z \in X$.
Example 2.1 ([3]). Consider the real numbers R, and suppose that ($\mathbf{R} ; *, \mathbf{e}$) has the multiplication

$$
x * y=(x-y)(x-e)+e
$$

Then $x * x=e ; e * x=e ; x * y=y * x=e$ yields $(x-y)(x-e)=0,(y-x)(y-e)=e$ and $x=y$ or $x=e=y$, i.e., $x=y$, i.e., $(\mathbf{R} ; *, e)$ is a d-algebra.

A d-algebra X is said to be a d^{*}-algebra [12] if it satisfies the following axiom: for all $x, y \in X$,
(D6) $(x * y) * x=0$.
P. J. Allen et al. [5] introduced the notion of mirror algebras of a given algebra as follows:

Let $(X, *, 0)$ be an algebra. Let $M(X):=X \times\{0,1\}$ and define a binary operation " $*$ " on $M(X)$ as follows:

$$
\begin{gathered}
(x, 0) *(y, 0):=(x * y, 0), \\
(x, 1) *(y, 1):=(y * x, 0), \\
(x, 0) *(y, 1):=(x *(x * y), 0), \\
(x, 1) *(y, 0):= \begin{cases}(\mathrm{y}, 1) & \text { when } x * y=0 \\
(\mathrm{x}, 1) & \text { when } x * y \neq 0 .\end{cases}
\end{gathered}
$$

Then we say that $M(X):=(M(X), *,(0,0))$ is a left mirror algebra of the algebra $(X, *, 0)$. Similarly, if we define

$$
(x, *) *(y, 1):=(y *(y * x), 0)
$$

then $M(X):=(M(X), *,(0,0))$ is a right mirror algebra of the algebra $(X, *, 0)$.
It was shown in [5] that the mirror algebra of a $d($ resp., $d-B H)$-algebra is also a $d($ resp., $d-B H)$-algebra, but the mirror algebra of a $B C K$-algebra need not be a $B C K$-algebra.

In [5] Allen et al. defined (left, right) mirror algebras of an algebra, but it is not known how to construct mirror algebras of any given algebra. K. S. So [14] investigated a construction of a mirror algebra in Q-algebras.

A Q-algebra [10] is a non-empty set X with a constant 0 and a binary operation "*" satisfying the axioms $(D 1),(D 2)$ and
(D7) $(x * y) * z=(x * z) * y$ for all $x, y, z \in X$.
Let $(X, *, 0)$ be a Q-algebra. Define a binary operation " \oplus " on $M(X)$ by
(M1) $(x, 0) \oplus(y, 0)=(x * y, 0)$,
(M2) $(x, 1) \oplus(y, 1)=(y * x, 0)$,
(M3) $(x, 0) \oplus(y, 1)=(\alpha(x, y), 0)$,
$(\mathrm{M} 4)(x, 1) \oplus(y, 0)=(\beta(x, y), 1)$
where $\alpha, \beta: X \times X \rightarrow X$ are mappings. K. S. So obtained the necessary conditions for $(M(X), \oplus,(0,0))$ to be a Q-algebra. K. S. So's definition for mirror algebras is more generalized case of P. J. Allen et al.'s method. In this paper we apply this idea to d-algebras, and obtain the necessary conditions for mirror d-algebras and mirror d^{*}-algebras.

3. Constructions of mirror $d\left(d^{*}\right)$-algebras

Let $(X, *, 0)$ be a d-algebra and let $M(X):=X \times\{0,1\}$. Define a binary operation " \oplus " on $M(X)$ by (M1) $\sim(M 4)$ as in Q-algebras.
Theorem 3.1. Let $(X, *, 0)$ be a d-algebra. If $\alpha(0, y)=0$ for all $y \in X$, then the mirror algebra $(M(X), \oplus,(0,0))$ is also a d-algebra.

Proof. By (M1) and (M2), the axiom $(D 1)$ holds trivially. For any $(y, 0) \in$ $M(X)$, we have $(0,0) \oplus(y, 0)=(0 * y, 0)=(0,0)$ by $(D 2)$. For any $(y, 1) \in M(X)$, $(0,0) \oplus(y, 1)=(\alpha(0, y), 0)$. If $\alpha(0, y)=0$ for all $y \in X$, then ($D 2$) holds. Assume $(x, i) \oplus(y, j)=(0,0)=(y, j) \oplus(x, i)$ where $x, y \in X$ and $i, j \in\{0,1\}$. We claim that $i=j$. In fact, if $i=0, j=1$, then $(0,0)=(y, 1) \oplus(x, 0)=(\beta(y, x), 1)$ and hence we obtain $\beta(y, x)=0$ and $0=1$, a contradiction. If $i=1, j=0$, then $(0,0)=(x, 1) \oplus(y, 0)=(\beta(x, y), 1)$, a contradiction also. It follows that $(x, i) \oplus(y, i)=(0,0)=(y, i) \oplus(x, i)$ and hence $(x * y, i)=(0,0)=(y * x, i)$. Since $(X, *, 0)$ is a d-algebra, we obtain $x=y$, proving the theorem.

Example 3.2. Consider a set $X:=\{0,1,2, \cdots\}$ with a binary operation "*" on X defined by

$$
x * y:= \begin{cases}0 & x \leq y \\ 1 & \text { otherwise }\end{cases}
$$

Then $(X, *, 0)$ is a d-algebra [12]. In order to construct for $M(X)$ to be a d-algebra, if we define $\alpha(x, y)=x y^{2}$ and $\beta(x, y)$ is an arbitrary function on $X \times X \rightarrow X$, then $M(X)$ is a d-algebra.

In Example 3.2, if we change the functions α, β, then we can obtain very many d-algebras.

A d-algebra $(X, *, 0)$ is said to be bounded if there exists $m \in X$ such that $x * m=0$ for all $x \in X$. We call such an element m the maximal element of X.

Proposition 3.3. Let $(X, *, 0)$ be a d-algebra. If $\alpha(x, 0)=0$ for all $x \in X$, then the mirror algebra $(M(X), \oplus,(0,0))$ is bounded.

Proof. Consider (0,1). Given $x \in X$, we have $(x, 0) \oplus(0,1)=(\alpha(x, 0), 0)$ and $(x, 1) \oplus(0,1)=(0 * x, 0)=(0,0)$. It follows that $(0,1)$ is the maximal element of $M(X)$ if $\alpha(x, 0)=0$ for all $x \in X$, proving the proposition.

The mirror d-algebra $M(X)$ in Example 3.2 is bounded, since $\alpha(x, y)=x y^{2}$ and $\alpha(0, y)=0$. If we define $\alpha(x, y)=y^{3}$, then $M(X)$ is a non-bounded mirror d-algebra.

Give a d-algebra X, we consider a mapping $\varphi: M(X) \rightarrow M(X)$ defined by $\varphi(x, 0)=(x, 0), \varphi(x, 1)=(x, 0)$ for all $x \in X$. Such a map φ is called an exchange function on $M(X)$. Note that the exchange function is self-inverse, i.e., $\varphi(\varphi(x, i))=(x, i)$ for all $(x, i) \in M(X)$.

Let $(X, *, 0)$ be a d-algebra. A map $f: X \rightarrow X$ is said to be order-reversing if $x * y=0, x, y \in X$, then $f(y) * f(x)=0$.

Theorem 3.4. Let $(M(X), \oplus,(0,0))$ be a mirror d-algebra of a d-algebra $(X, *, 0)$. Then the exchange function $\varphi: M(X) \rightarrow M(X)$ is order-reversing if $\alpha(x, y)=0$ implies $\alpha(y, x)=0$ for all $x, y \in X$.
Proof. Given $x, y \in X$, we consider 4 cases. If $(x, 0) \oplus(y, 0)=(0,0)$, then $(x * y, 0)=(0,0)$ and hence $x * y=0$. It follows that $\varphi(y, 0) \oplus \varphi(x, 0)=$ $(y, 1) \oplus(x, 1)=(x * y, 0)=(0,0)$. If $(x, 1) \oplus(y, 1)=(0,0)$, then $(y * x, 0)=(0,0)$ and hence $y * x=0$. It follows that $\varphi(y, 1) \oplus \varphi(x, 1)=(y, 0) \oplus(x, 0)=(y * x, 0)=$ $(0,0)$. If $(x, 0) \oplus(y, 1)=(0,0)$, then $(\alpha(x, y), 0)=(0,0)$ and hence $\alpha(x, y)=0$. By assumption, we have $\alpha(y, x)=0$. It follows that $\varphi(y, 1) \oplus \varphi(x, 0)=(y, 0) \oplus$ $(x, 1)=(\alpha(y, x), 0)=(0,0)$. The case $(x, 1) \oplus(y, 0)=(0,0)$ does not happen, since $(x, 1) \oplus(y, 0)=(\beta(x, y), 1) \neq(0,0)$. This proves the theorem.

Remark. There are no restrictions on the function β on $M(X)$ for the exchange function φ of $M(X)$ to be order-reversing.

In the above Theorem 3.4, if we define $\alpha(x, y) \equiv(0,0)$, then the exchange function φ is order-reversing. In this case, notice that $(x, 0) \oplus(y, 1)=(0,0)$ is our version of $X \times\{0,1\}$ "lies below" $X \times\{1\}$. Thus we have an "ordinal sum" defined in this way, with $\beta: X \times X \rightarrow X$ arbitrary.
Theorem 3.5. Let $(X, *, 0)$ be a d-algebra with ($D 5$). Then the necessary conditions for the mirror d-algebra $(M(X), \oplus,(0,0)$ to have the condition $(D 5)$ are
(i) $\alpha(0, y)=0$,
(ii) $\alpha(x * \alpha(x, y), y)=0$,
(iii) $(\beta(x, y) * x) * y=0$,
(iv) $y * \beta(x, y * x)=0$
for all $x, y \in X$.

Proof. Given $x, y \in X$, we consider 4 cases. Case 1. $(x, 0)$ and $(y, 0)$: Since X has the condition $(D 5)$, we have $[(x, 0) \oplus((x, 0) \oplus(y, 0))] \oplus(y, 0)=((x *(x *$ $y)) * y, 0)=(0,0)$. Case 2. $(x, 0)$ and $(y, 1):[(x, 0) \oplus((x, 0) \oplus(y, 1))] \oplus(y, 1)=$ $[(x, 0) \oplus(\alpha(x, y), 0)] \oplus(y, 1)=(x * \alpha(x, y), 0) \oplus(y, 1)=(\alpha(x * \alpha(x, y), y), 0)$. Hence the requirement is $\alpha(x * \alpha(x, y), y)=0$. Case 3. $(x, 1)$ and $(y, 0):[(x, 1) \oplus$ $((x, 1) \oplus(y, 0))] \oplus(y, 0)=[(x, 1) \oplus(\beta(x, y), 1)] \oplus(y, 0)=((\beta(x, y) * x) * y, 0)$. Hence the requirement is $(\beta(x, y) * x) * y=0$. Case 4. $(x, 1)$ and $(y, 1):[(x, 1) \oplus$ $((x, 1) \oplus(y, 1))] \oplus(y, 1)=[(x, 1) \oplus(y * x, 0)] \oplus(y, 1)=(\beta(x, y * x), 1) \oplus(y, 1)=$ $(y * \beta(x, y * x), 0)$. Hence the requirement is $y * \beta(x, y * x)=0$. This proves the theorem.

Note that finding suitable examples of $\alpha(x, y)$ and $\beta(x, y)$ satisfying the above conditions (i) \sim (iv) may enrich the chance of analytic investigation of algebraic structures.
Theorem 3.6. Let $(X, *, 0)$ be a d^{*}-algebra. Then the necessary conditions for the mirror d-algebra $\left(M(X), \oplus,(0,0)\right.$ to be a d^{*}-algebra are
(i) $\alpha(0, y)=0$,
(ii) $\alpha(x, y) * x=0$,
(iii) $x * \beta(x, y)=0$,
(iv) $\alpha(y * x, x)=0$
for all $x, y \in X$.
Proof. Given $x, y \in X$, we consider 4 cases. Case 1. $(x, 0)$ and ($y, 0)$: Since X is a d^{*}-algebra, we have $((x, 0) \oplus(y, 0)) \oplus(x, 0)=((x * y) * x, 0)=(0,0)$. Case 2 . $(x, 0)$ and $(y, 1):((x, 0) \oplus(y, 1)) \oplus(x, 0)=(\alpha(x, y), 0) \oplus(x, 0)=(\alpha(x, y) * x, 0)$. Hence the requirement is $\alpha(x, y) * x=0$. Case 3. $(x, 1)$ and $(y, 0):((x, 1) \oplus$ $(y, 0)) \oplus(x, 1)=(\beta(x, y), 1) \oplus(x, 1)=(x * \beta(x, y), 0)=(0,0)$. Hence the requirement is $x * \beta(x, y)=0$. Case 4. $(x, 1)$ and $(y, 1):[(x, 1) \oplus(y, 1)] \oplus(x, 1)=$ $(y * x, 0) \oplus(x, 1)=(\alpha(y * x, x), 0)=(0,0)$. It follows that $\alpha(y * x, x)=0$. This proves the theorem.

Example 3.7. Let $(X, *, 0)$ be a d^{*}-algebra. If we define a binary operation " \oplus " on $M(X)$ by
(i) $(x, 0) \oplus(y, 0)=(x * y, 0)$,
(ii) $(x, 1) \oplus(y, 1)=(y * x, 0)$,
(iii) $(x, 0) \oplus(y, 1)=(0,0)$,
(iv) $(x, 1) \oplus(y, 0)=(x, 1)$
for all $x, y \in X$. Then it is easy to see that $(M(X), \oplus,(0,0))$ is a d^{*}-algebra.

Acknowledgement

The authors are deeply grateful to the referee for the valuable suggestions.

References

1. S.S. Ahn and H.S. Kim, On QS-algebras, Chungcheong Math. J. 12(1999), 33-41.
2. S.S. Ahn, H.S. Kim and H.D. Lee, R-maps and L-maps in Q-algebras, Int. J. Math. Pure Appl. Math. 12(2004), 419-425.
3. P.J. Allen, H.S. Kim and J. Neggers, On companion d-algebras, Math. Slovaca 57 (2007), 93-106.
4. P.J. Allen, H.S. Kim and J. Neggers, Deformations of $d / B C K$-algebras, Bull. Korean Math. Soc. (to appear).
5. P.J. Allen, H.S. Kim and J. Neggers, L-up and mirror algebras, Sci. Math. Japonica. 59 (2004), 605-612.
6. A. Iorgulescu, Algebras of logic as $B C K$-algebras, Editura ASE, Bucharest, 2008.
7. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
8. K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
9. J. Meng and Y.B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.
10. J. Neggers, S.S. Ahn and H.S. Kim, On Q-algebras, Int. J. Math. and Math. Sci. 27 (2001), 749-757.
11. J. Neggers, A. Dvurećenskij and H.S. Kim, On d-fuzzy functions in d-algebras, Foundation of Physics $\mathbf{3 0}$ (2000), 1805-1815.
12. J. Neggers, Y.B. Jun and H.S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243-251.
13. J. Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
14. K.S. So, A contruction of mirror Q-algebras, Int. J. Math. \& Math. Sci., 2011 (2011), Art. ID 219496.
15. H. Yisheng, $B C I$-algebras, Science Press, Beijing, 2006.

Young Hee Kim Department of Mathematics, Chungbuk National University, Chongju 361-763, Korea.
e-mail: yhkim@chungbuk.ac.kr
Keum Sook So Department of Mathematics, Hallym University, Chuncheon 200-702, Korea.
e-mail: ksso@hallym.ac.kr

[^0]: Received October 3, 2012. Revised November 29, 2012. Accepted December 2, 2012.

 * Corresponding author. ${ }^{\dagger}$ This work is supported by Chungbuk National University fund 2012.
 (c) 2013 Korean SIGCAM and KSCAM.

