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MIRROR d-ALGEBRAS†

KEUM SOOK SO AND YOUNG HEE KIM∗

Abstract. In this paper we investigate necessary conditions for the mirror
algebra (M(X),⊕, (0, 0)) to be a d-algebra (having the condition (D5),
resp.) when (X, ∗, 0) is a d-algebra (having the condition (D5), resp.).

Moreover, we obtain the necessary conditions for M(X) of a d∗-algebra X
to be a d∗-algebra.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras [7, 8]. It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. We refer useful textbooks for
BCK/BCI-algebra to [6, 9, 15]. J. Neggers et al. [10] introduced the notion of
Q-algebras which is a generalization ofBCK/BCI/BCH-algebras, and obtained
several properties and discussed quadratic Q-algebras. S. S. Ahn and H. S. Kim
[1] introduced the notion of QS-algebras, and S. S. Ahn et al. [2] studied positive
implicativity in Q-algebras and discussed some relations between R−(L−) maps
and positive implicativity. J. Neggers and H. S. Kim introduced the notion of
d-algebras which is another useful generalization of BCK-algebras, and then
investigated several relations between d-algebras and BCK-algebras as well as
several other relations between d-algebras and oriented digraphs [13]. After that
some further aspects were studied [3, 4, 11, 12]. P. J. Allen et al. [5] introduced
the notion of mirror image of a given algebras, and obtained some interesting
properties: a mirror algebra of a d-algebra is also a d-algebra, and a mirror
algebra of an implicative BCK-algebra is a left L-up algebra. Recently, K. S.
So [14] investigated how to construct mirror Q-algebras of a Q-algebra, and she
obtained the necessary conditions for M(X) to be a Q-algebra.
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In this paper we investigate necessary conditions for the mirror algebra
(M(X),⊕, (0, 0)) to be a d-algebra (having the condition (D5), resp.) when
(X, ∗, 0) is a d-algebra (having the condition (D5), resp.). Moreover, we obtain
the necessary conditions for M(X) of a d∗-algebra X to be a d∗-algebra.

2. Preliminaries

An (ordinary) d-algebra [13] is a non-empty set X with a constant 0 and a
binary operation “ ∗ ” satisfying the following axioms:

(D1) x ∗ x = 0,
(D2) 0 ∗ x = 0,
(D3) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

(D4) (x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(D5) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Example 2.1 ([3]). Consider the real numbers R, and suppose that (R; ∗, e)
has the multiplication

x ∗ y = (x− y)(x− e) + e

Then x∗x = e; e∗x = e;x∗y = y∗x = e yields (x−y)(x−e) = 0, (y−x)(y−e) = e
and x = y or x = e = y, i.e., x = y, i.e., (R; ∗, e) is a d-algebra.

A d-algebra X is said to be a d∗-algebra [12] if it satisfies the following axiom:
for all x, y ∈ X,

(D6) (x ∗ y) ∗ x = 0.

P. J. Allen et al. [5] introduced the notion of mirror algebras of a given algebra
as follows:

Let (X, ∗, 0) be an algebra. Let M(X) := X × {0, 1} and define a binary
operation “∗” on M(X) as follows:

(x, 0) ∗ (y, 0) := (x ∗ y, 0),
(x, 1) ∗ (y, 1) := (y ∗ x, 0),

(x, 0) ∗ (y, 1) := (x ∗ (x ∗ y), 0),

(x, 1) ∗ (y, 0) :=

{
(y, 1) when x ∗ y = 0,

(x, 1) when x ∗ y ̸= 0.

Then we say that M(X) := (M(X), ∗, (0, 0)) is a left mirror algebra of the
algebra (X, ∗, 0). Similarly, if we define

(x, ∗) ∗ (y, 1) := (y ∗ (y ∗ x), 0)
then M(X) := (M(X), ∗, (0, 0)) is a right mirror algebra of the algebra (X, ∗, 0).

It was shown in [5] that the mirror algebra of a d(resp., d − BH)-algebra is
also a d(resp., d−BH)-algebra, but the mirror algebra of a BCK-algebra need
not be a BCK-algebra.
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In [5] Allen et al. defined (left, right) mirror algebras of an algebra, but it is
not known how to construct mirror algebras of any given algebra. K. S. So [14]
investigated a construction of a mirror algebra in Q-algebras.

AQ-algebra [10] is a non-empty setX with a constant 0 and a binary operation
“ ∗ ” satisfying the axioms (D1), (D2) and

(D7) (x ∗ y) ∗ z = (x ∗ z) ∗ y for all x, y, z ∈ X.

Let (X, ∗, 0) be a Q-algebra. Define a binary operation “⊕” on M(X) by

(M1) (x, 0)⊕ (y, 0) = (x ∗ y, 0),
(M2) (x, 1)⊕ (y, 1) = (y ∗ x, 0),
(M3) (x, 0)⊕ (y, 1) = (α(x, y), 0),
(M4) (x, 1)⊕ (y, 0) = (β(x, y), 1)

where α, β : X × X → X are mappings. K. S. So obtained the necessary
conditions for (M(X),⊕, (0, 0)) to be a Q-algebra. K. S. So’s definition for
mirror algebras is more generalized case of P. J. Allen et al.’s method. In this
paper we apply this idea to d-algebras, and obtain the necessary conditions for
mirror d-algebras and mirror d∗-algebras.

3. Constructions of mirror d(d∗)-algebras

Let (X, ∗, 0) be a d-algebra and let M(X) := X × {0, 1}. Define a binary
operation “⊕” on M(X) by (M1) ∼ (M4) as in Q-algebras.

Theorem 3.1. Let (X, ∗, 0) be a d-algebra. If α(0, y) = 0 for all y ∈ X, then
the mirror algebra (M(X),⊕, (0, 0)) is also a d-algebra.

Proof. By (M1) and (M2), the axiom (D1) holds trivially. For any (y, 0) ∈
M(X), we have (0, 0)⊕(y, 0) = (0∗y, 0) = (0, 0) by (D2). For any (y, 1) ∈ M(X),
(0, 0)⊕(y, 1) = (α(0, y), 0). If α(0, y) = 0 for all y ∈ X, then (D2) holds. Assume
(x, i)⊕ (y, j) = (0, 0) = (y, j)⊕ (x, i) where x, y ∈ X and i, j ∈ {0, 1}. We claim
that i = j. In fact, if i = 0, j = 1, then (0, 0) = (y, 1) ⊕ (x, 0) = (β(y, x), 1)
and hence we obtain β(y, x) = 0 and 0 = 1, a contradiction. If i = 1, j = 0,
then (0, 0) = (x, 1) ⊕ (y, 0) = (β(x, y), 1), a contradiction also. It follows that
(x, i) ⊕ (y, i) = (0, 0) = (y, i) ⊕ (x, i) and hence (x ∗ y, i) = (0, 0) = (y ∗ x, i).
Since (X, ∗, 0) is a d-algebra, we obtain x = y, proving the theorem. �

Example 3.2. Consider a set X := {0, 1, 2, · · · } with a binary operation “ ∗ ”
on X defined by

x ∗ y :=

{
0 x ≤ y,

1 otherwise

Then (X, ∗, 0) is a d-algebra [12]. In order to construct for M(X) to be a
d-algebra, if we define α(x, y) = xy2 and β(x, y) is an arbitrary function on
X ×X → X, then M(X) is a d-algebra.

In Example 3.2, if we change the functions α, β, then we can obtain very
many d-algebras.
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A d-algebra (X, ∗, 0) is said to be bounded if there exists m ∈ X such that
x ∗m = 0 for all x ∈ X. We call such an element m the maximal element of X.

Proposition 3.3. Let (X, ∗, 0) be a d-algebra. If α(x, 0) = 0 for all x ∈ X, then
the mirror algebra (M(X),⊕, (0, 0)) is bounded.

Proof. Consider (0, 1). Given x ∈ X, we have (x, 0) ⊕ (0, 1) = (α(x, 0), 0) and
(x, 1) ⊕ (0, 1) = (0 ∗ x, 0) = (0, 0). It follows that (0, 1) is the maximal element
of M(X) if α(x, 0) = 0 for all x ∈ X, proving the proposition. �

The mirror d-algebra M(X) in Example 3.2 is bounded, since α(x, y) = xy2

and α(0, y) = 0. If we define α(x, y) = y3, then M(X) is a non-bounded mirror
d-algebra.

Give a d-algebra X, we consider a mapping φ : M(X) → M(X) defined
by φ(x, 0) = (x, 0), φ(x, 1) = (x, 0) for all x ∈ X. Such a map φ is called an
exchange function on M(X). Note that the exchange function is self-inverse,
i.e., φ(φ(x, i)) = (x, i) for all (x, i) ∈ M(X).

Let (X, ∗, 0) be a d-algebra. A map f : X → X is said to be order-reversing
if x ∗ y = 0, x, y ∈ X, then f(y) ∗ f(x) = 0.

Theorem 3.4. Let (M(X),⊕, (0, 0)) be a mirror d-algebra of a d-algebra (X, ∗, 0).
Then the exchange function φ : M(X) → M(X) is order-reversing if α(x, y) = 0
implies α(y, x) = 0 for all x, y ∈ X.

Proof. Given x, y ∈ X, we consider 4 cases. If (x, 0) ⊕ (y, 0) = (0, 0), then
(x ∗ y, 0) = (0, 0) and hence x ∗ y = 0. It follows that φ(y, 0) ⊕ φ(x, 0) =
(y, 1)⊕ (x, 1) = (x∗y, 0) = (0, 0). If (x, 1)⊕ (y, 1) = (0, 0), then (y ∗x, 0) = (0, 0)
and hence y∗x = 0. It follows that φ(y, 1)⊕φ(x, 1) = (y, 0)⊕(x, 0) = (y∗x, 0) =
(0, 0). If (x, 0)⊕ (y, 1) = (0, 0), then (α(x, y), 0) = (0, 0) and hence α(x, y) = 0.
By assumption, we have α(y, x) = 0. It follows that φ(y, 1)⊕ φ(x, 0) = (y, 0)⊕
(x, 1) = (α(y, x), 0) = (0, 0). The case (x, 1) ⊕ (y, 0) = (0, 0) does not happen,
since (x, 1)⊕ (y, 0) = (β(x, y), 1) ̸= (0, 0). This proves the theorem. �
Remark. There are no restrictions on the function β on M(X) for the exchange
function φ of M(X) to be order-reversing.

In the above Theorem 3.4, if we define α(x, y) ≡ (0, 0), then the exchange
function φ is order-reversing. In this case, notice that (x, 0) ⊕ (y, 1) = (0, 0) is
our version of X × {0, 1} “lies below” X × {1}. Thus we have an “ordinal sum”
defined in this way, with β : X ×X → X arbitrary.

Theorem 3.5. Let (X, ∗, 0) be a d-algebra with (D5). Then the necessary con-
ditions for the mirror d-algebra (M(X),⊕, (0, 0) to have the condition (D5) are

(i) α(0, y) = 0,
(ii) α(x ∗ α(x, y), y) = 0,
(iii) (β(x, y) ∗ x) ∗ y = 0,
(iv) y ∗ β(x, y ∗ x) = 0

for all x, y ∈ X.
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Proof. Given x, y ∈ X, we consider 4 cases. Case 1. (x, 0) and (y, 0): Since X
has the condition (D5), we have [(x, 0) ⊕ ((x, 0) ⊕ (y, 0))] ⊕ (y, 0) = ((x ∗ (x ∗
y)) ∗ y, 0) = (0, 0). Case 2. (x, 0) and (y, 1): [(x, 0)⊕ ((x, 0)⊕ (y, 1))]⊕ (y, 1) =
[(x, 0) ⊕ (α(x, y), 0)] ⊕ (y, 1) = (x ∗ α(x, y), 0) ⊕ (y, 1) = (α(x ∗ α(x, y), y), 0).
Hence the requirement is α(x∗α(x, y), y) = 0. Case 3. (x, 1) and (y, 0): [(x, 1)⊕
((x, 1) ⊕ (y, 0))] ⊕ (y, 0) = [(x, 1) ⊕ (β(x, y), 1)] ⊕ (y, 0) = ((β(x, y) ∗ x) ∗ y, 0).
Hence the requirement is (β(x, y) ∗x) ∗ y = 0. Case 4. (x, 1) and (y, 1): [(x, 1)⊕
((x, 1)⊕ (y, 1))]⊕ (y, 1) = [(x, 1)⊕ (y ∗ x, 0)]⊕ (y, 1) = (β(x, y ∗ x), 1)⊕ (y, 1) =
(y ∗ β(x, y ∗ x), 0). Hence the requirement is y ∗ β(x, y ∗ x) = 0. This proves the
theorem. �

Note that finding suitable examples of α(x, y) and β(x, y) satisfying the above
conditions (i) ∼ (iv) may enrich the chance of analytic investigation of algebraic
structures.

Theorem 3.6. Let (X, ∗, 0) be a d∗-algebra. Then the necessary conditions for
the mirror d-algebra (M(X),⊕, (0, 0) to be a d∗-algebra are

(i) α(0, y) = 0, (ii) α(x, y) ∗ x = 0,
(iii) x ∗ β(x, y) = 0, (iv) α(y ∗ x, x) = 0

for all x, y ∈ X.

Proof. Given x, y ∈ X, we consider 4 cases. Case 1. (x, 0) and (y, 0): Since X is
a d∗-algebra, we have ((x, 0)⊕ (y, 0))⊕ (x, 0) = ((x ∗ y) ∗ x, 0) = (0, 0). Case 2.
(x, 0) and (y, 1): ((x, 0)⊕ (y, 1))⊕ (x, 0) = (α(x, y), 0)⊕ (x, 0) = (α(x, y) ∗ x, 0).
Hence the requirement is α(x, y) ∗ x = 0. Case 3. (x, 1) and (y, 0): ((x, 1) ⊕
(y, 0)) ⊕ (x, 1) = (β(x, y), 1) ⊕ (x, 1) = (x ∗ β(x, y), 0) = (0, 0). Hence the
requirement is x∗β(x, y) = 0. Case 4. (x, 1) and (y, 1): [(x, 1)⊕ (y, 1)]⊕ (x, 1) =
(y ∗ x, 0)⊕ (x, 1) = (α(y ∗ x, x), 0) = (0, 0). It follows that α(y ∗ x, x) = 0. This
proves the theorem. �
Example 3.7. Let (X, ∗, 0) be a d∗-algebra. If we define a binary operation
“⊕” on M(X) by

(i) (x, 0)⊕ (y, 0) = (x ∗ y, 0), (ii) (x, 1)⊕ (y, 1) = (y ∗ x, 0),
(iii) (x, 0)⊕ (y, 1) = (0, 0), (iv) (x, 1)⊕ (y, 0) = (x, 1)

for all x, y ∈ X. Then it is easy to see that (M(X),⊕, (0, 0)) is a d∗-algebra.
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