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EXISTENCE-AND-UNIQUENESS AND MEAN-SQUARE

BOUNDEDNESS OF THE SOLUTION TO STOCHASTIC

CONTROL SYSTEMS†

PEILIN LU AND CAIXIA GAO∗

Abstract. This paper mainly deals with the stochastic control system,
the existence and uniqueness of solutions and the behavior of solutions
are investigated. Firstly, we obtain sufficient conditions which guarantee

the existence and uniqueness of solutions to the stochastic control system.
And then, boundedness of the solution to the system is achieved under
mean-square linear growth condition.
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1. Introduction

Stochastic control theory is one of the most important part of control theory
and stochastic optimal theory, due to their wide applications in engineering, life
science and finance, see [1, 2]. For the following stochastic differential equation{

dx(t) = f(t, x(t))dt+ g(t, x(t))dB(t) t ∈ [t0, T ]

x(t) = x0

Where x(t) ∈ Rn, f : [0, T ]×Rn → Rn, g : [0, T ]×Rn → Rn×m are determined
function with respect to t and x. The existence and uniqueness of solutions
and the behavior of solutions were investigated in [3], which showed that if for
any (t, x) ∈ [0, T ]×Rn,

|f(t, x)|+ |g(t, x)| ≤ C(1 + |x|)
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and for any x, y ∈ Rn and t ∈ [0, T ],

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ K|x− y|, K ≥ 0

then there exists a unique t-continuous solution x(t), which is adapted to a
filtration F x0

t generated by x0 and B(s), s ≤ t, and

E

∫ T

0

|x(t)|2dt < ∞.

Also, Hu Guixin, in [4], gave the proof of the existence and uniqueness theorem
for stochastic differential equations with random coefficients as follows.

dx(t) = f(ω, t, x(t))dt+ g(ω, t, x(t))dB(t),

In this paper, we consider the existence and uniqueness of solutions to the fol-
lowing stochastic control system:{

dxu(t) = f(t, x(t), u(t, x(t)))dt+ g(t, x(t), u(t, x(t)))dB(t) t ∈ [0, T ]

u(t, x(t)) ∈ U

Where u(t, x(t)) ∈ U is a Markov control function which depend only on t and
on the state x(t) at the instant t.

The organization of this paper is as follows. Firstly, we give some preliminary
concepts and definitions in Section 2. In Section 3, we investigate the existence
and uniqueness of solutions and behavior of solutions to the stochastic control
system. And we give the conclusion at the last section.

2. Preliminary concepts and definitions

In this section, we introduce some basic concepts and Lemmas which are used
throughout this paper.

Let X and Xn, where n ≥ 1, denote Rn-valued random variables defined on
a probability space (Ω,F , P ). The following two convergence concepts can be
found application in probability theory, see [5].

(a) If there exists a set of measure zero N ∈ F such that, for all ω ̸∈ N, the
sequence Xn(ω) ∈ Rn converges in the usual sense to X(ω) ∈ Rn, then {Xn} is
said to converge almost certainly [P ] or with probability 1 to X. we write

ac− lim
n→∞

Xn = X.

(b) If for every ε > 0,

Pn(ε) = P{ω : |Xn(ω)−X(ω)| > ε} → 0 (n → ∞),

then {Xn} is said to converge stochastically or in probability to X, and we write

st− lim
n→∞

Xn = X.

Lemma 2.1 (Chebyshev Inequality). If c > 0, p > 0, X ∈ Lp, then

P{ω : |X(ω)| ≥ c} ≤ c−pE|X|p
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Lemma 2.2 (Borel-Cantelli Lemma). If {Ak} ⊂ F and
∑∞

k=1 P (Ak) < ∞, then

P (lim sup
k→∞

Ak) = 0

Lemma 2.3. Let G, G1, G2, . . . , Gn is n×m matrix valued function on M2[t0, t]
and B(t) is m-dimensional Brownian motion. If

lim
n→∞

∫ t

t0

E|Gn(s)−G(s)|2ds = 0

then

st− lim
n→∞

∫ t

t0

GndB(t) =

∫ t

t0

GdB(t)

Lemma 2.4 (Gronwall Inequality). Suppose x(t), L(t) ∈ C([a, b];R), con-
stant c ≥ 0, such that

0 ≤ x(t) ≤ c+

∫ t

a

L(s)x(s)ds

then for any t ∈ [a, b], we have

0 ≤ x(t) ≤ ce
∫ t
a
L(s)ds

In particular, when c =0, x(t) = 0.

3. The Solution of Stochastic Control Systems

Let (Ω,F , P ) be a probability space with filtration {Ft} and (B(t))t≥0 be
a Rn-valued standard Brownian motion. We assume Ft = σ{(B(s)), 0 ≤ s ≤
t} and consider the following n-dimensional stochastic control system:{

dxu(t) = f(t, x(t), u(t, x(t)))dt+ g(t, x(t), u(t, x(t)))dB(t) t ∈ [0, T ]

u(t, x(t)) ∈ U
(1)

Where xu(t) ∈ Rn, f : [0, T ] × Rn × U → Rn, g : [0, T ] × Rn × U → Rn×m

and B(t) is m-dimensional Brownian motion. The functions u(t, x(t)) is a con-
trol function whose value we can choose in the given Borel set U ⊂ Rp of
admissible control functions. we shall confine ourselves here to Markov control
functions which depend only on t and on the state x(t) at the instant t and not
on the value of x(s) for (s < t).

Let g(t, x(t), u(t, x(t))) be a m×n matrix valued function, f(t, x(t), u(t, x(t)))
be a n-vector valued function and u(t, x(t)) be a p-vector valued function, and

(i) For each u, g(t, x(t), u(t, x(t))) and f(t, x(t), u(t, x(t))) are continuous
in (t, x);

(ii) the functions g(t, x(t), u(t, x(t))) and f(t, x(t), u(t, x(t))) are measurable
with respect to t, x and u, for t ∈ [0, T ], x ∈ Rn and u ∈ Rp with T > 0;

(iii) for any (t, x) ∈ [0, T ] × Rn, g(t, x(t), u(t, x(t))), f(t, x(t), u(t, x(t))) ∈
L2(P ); for any x ∈ Rn, such that g(t, x(t), u(t, x(t))) and f(t, x(t), u(t, x(t)))
are Ft−adapted;
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(iv) there exist constants K and C, for all t ∈ [0, T ], and x, y ∈ Rn, such that
(a) (mean square linear growth condition)

E|f(t, x(t), u(t, x(t)))|2 + E|g(t, x(t), u(t, x(t)))|2

≤ C(1 + |x(t)|2 + |u(t, x(t))|2)
(2)

(b) (mean square Lipschitz condition)

E|f(t, x(t), u(t, x(t)))− f(t, y(t), u(t, y(t)))|2

+ E|g(t, x(t), u(t, x(t)))− g(t, y(t), u(t, y(t)))|2

≤ K(|x(t)− y(t))|2 + |u(t, x(t))− u(t, y(t))|2)
(3)

(v) control set U is a bounded set, that is, for any u ∈ U, there exists con-
stant M > 0, such that

∥u∥ ≤ M (4)

(vi) there exists constant L, for any u ∈ U :

E|u(t, x(t))− u(t, y(t)))|2 ≤ L(|x(t)− y(t))|2 (5)

Definition 3.1. xu(t) is said to be a solution to (1) if xu(t) has the following
properties

(i) xu(t) is t-continuous and Fm
t -adapted;

(ii) f(t, x(t), u(t, x(t))) ∈ L1([0, T ]×Rn;U),
g(t, x(t), u(t, x(t))) ∈ L2([0, T ]×Rn;U)

(iii) xu(0) = ξ, for each t ∈ [0, T ] and u ∈ U

xu(t) = ξ +

∫ t

0

f(s, x(s), u(s, x(s)))ds+

∫ t

0

g(s, x(s), u(s, x(s)))dB(s)

The uniqueness means that if xu(t), yu(t) are two t-continuous functions
satisfying conditions (i)-(iii), then

P{ sup
0≤t≤T

|xu(t)− yu(t)| > 0} = 0

Now we establish the existence-and-uniqueness theorem for equation (1).

Theorem 3.2. Suppose that g(t, x(t), u(t, x(t)) and f(t, x(t), u(t, x(t))) satisfy
conditions (i)− (vi), and xu(0) is a random variable which is independent of the
σ−algebra Ft and E|xu(0)|2 < ∞. Then there is a unique solution xu(t) to (1)
defined on [0, T ], T ≥ 0.

Proof. First we prove the existence of solution. We define the Picard sequence

xun
n (t) = xu0

0 (0) +

∫ t

0

f(s, xn−1(s), u(s, xn−1(s)))ds

+

∫ t

0

g(s, xn−1(s), u(s, xn−1(s)))dB(s)
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here un = u(s, xn(s)). Now we prove that xun
n (t) is uniformly convergent

in [0, T ]. By the definition of xun
n (t), one can show that

|xu1
1 (t)− xu0

0 (t)|2

= |
∫ t

0

f(s, x0(s), u(s, x0(s)))ds+

∫ t

0

g(s, x0(s), u(s, x0(s)))dB(s)|2

By the elementary inequality (a+ b)2 ≤ 2(a2 + b2), we get

∥xu1
1 (t)− xu0

0 (t)|2

≤ 2|
∫ t

0

f(s, x0(s), u(s, x0(s)))ds|2 + 2|
∫ t

0

g(s, x0(s), u(s, x0(s)))dB(s)|2

Taking the expectation on both sides, and by the following condition

E|
∫ t

0

g(s, x0(s), u(s, x0(s)))dB(s)|2 =

∫ t

0

E|g(s, x0(s), u(s, x0(s)))|2ds

we obtain

E|xu1
1 (t)− xu0

0 (t)|2

≤ 2t

∫ t

0

E|f(s, x0(s), u(s, x0(s)))|2ds+ 2

∫ t

0

E|g(s, x0(s), u(s, x0(s))|2ds

Using (2) we get

E|xu1
1 (t)− xu0

0 (t)|2 ≤ 2CT (T + 1)(1 + E|x0(s)|2 + E|u(s, x0(s))|2)
Also using (4) we get

E|xu1
1 (t)− xu0

0 (t)|2 ≤ 2CT (T + 1)(1 + E|x0(s)|2 +M2)

So that

E( sup
0≤s≤t

|xu1
1 (s)− xu0

0 (s)|2) ≤ A1 (6)

where A1 = 2CT (T + 1)(1 + E|x0(s)|2 +M2), We now claim that for all n ≥ 0

E( sup
0≤s≤t

|xun+1

n+1 (s)− xun
n (s)|2) ≤ A1(A2t)

n

n× (n− 1)× · · · × 1
t ∈ [0, T ] (7)

where A2 only depends on K,C,L, T,M and E|xu(0)| . We shall show this by
induction. In view of (6) we see that (7) holds when n = 0. Under the inductive
assumption, (7) holds for some n ≥ 0, so we shall show that (7) also holds
for n+ 1. Note that

E( sup
0≤s≤t

|xun+2

n+2 (s)− x
un+1

n+1 (s)|2)

= E( sup
0≤s≤t

|
∫ t

0

[f(s, xn+1(s), u(s, xn+1(s)))− f(s, xn(s), u(s, xn(s)))]ds

−
∫ t

0

[g(s, xn+1(s), u(s, xn+1(s)))− g(s, xn(s), u(s, xn(s)))]dB(s)|2)
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Taking the expectation, by (3) and (4) as well as the inductive assumption, we
get

E( sup
0≤s≤t

|xun+2

n+2 (s)− x
un+1

n+1 (s)|2)

≤ 2KT (T + 1)(L+ 1)

∫ t

0

|xun+1

n+1 (s)− xun
n (s)|2ds

≤ A2

∫ t

0

E( sup
0≤r≤s

|xun+1

n+1 (r)− xun
n (r)|2ds

≤ A2

∫ t

0

A1(A2s)
n

n× (n− 1)× · · · × 1
ds

=
A1(A2t)

n+1

(n+ 1)× n× · · · × 1

That is (7) holds for n+ 1. So by induction, (7) holds for all n ≥ 0. Thus,

E( sup
0≤s≤t

|xun+1

n+1 (s)− xun
n (s)|2) ≤ A1(A2t)

n

n× (n− 1)× · · · × 1

By Lemma 2.1

P{ sup
0≤s≤t

|xun+1

n+1 (s)− xun
n (s)| ≥ 1

2n
} ≤ A1(4A2t)

n

n× (n− 1)× · · · × 1

Since
∑∞

n=0
A1(4A2t)

n

n×(n−1)×···×1 < ∞ So

∞∑
n=0

P{ sup
0≤s≤t

|xun+1

n+1 (s)− xun
n (s)| ≥ 1

2n
} < ∞

By Lemma 2.2

P{ lim
n→∞

sup
0≤s≤t

|xun+1

n+1 (s)− xun
n (s)| ≥ 1

2n
} = 0

that is for every u ∈ U, there exists n0 ∈ N, when n ≥ n0, we have

sup
0≤t≤T

|xun+1

n+1 (t)− xun
n (t)| ≤ 1

2n

Implies that

ac− lim
n→∞

{xu0
0 (t) +

∞∑
n=0

[x
un+1

n+1 (t)− xun
n (t)]}

= ac− lim
n→∞

xun
n (t) = xu(t)

uniformly on [0, T ]. Finally, we show that xu(t) satisfies (1).
Obviously, xu(t) is t-continuous and Fm

t -adapted
Notice that

E|
∫ t

0

[f(s, xn(s), u(s, xn(s)))− f(s, x(s), u(s, x(s)))]ds|2
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+E|
∫ t

0

[g(s, xn(s), u(s, xn(s)))− g(s, x(s), u(s, x(s)))]dB(s)|2

≤ K(T + 1)(L+ 1)

∫ t

0

E|xun
n (s)− xu(s)|2ds → 0 (n → ∞)

and

ac− lim
n→∞

∫ t

0

f(s, xn(s), u(s, xn(s)))ds

=

∫ t

0

f(s, x(s), u(s, x(s)))ds t ∈ [0, T ]

By Lemma 2.3 we get

st− lim
n→∞

∫ t

0

g(s, xn(s), u(s, xn(s)))dB(s)

=

∫ t

0

g(s, x(s), u(s, x(s)))dB(s) t ∈ [0, T ]

Therefore taking limit of

xun
n (t) =xu0

0 (0) +

∫ t

0

f(s, xn−1(s), u(s, xn−1(s)))ds

+

∫ t

0

g(s, xn−1(s), u(s, xn−1(s)))dB(s)

as n → ∞, we have

xu(t) = xu0
0 (0) +

∫ t

0

f(s, x(s), u(s, x(s)))ds

+

∫ t

0

g(s, x(s), u(s, x(s)))dB(s)

So xu(t) is the solution of (1).

Next we give the proof of the uniqueness. Let xu(t) and yu(t) be solution to
(1), then

|xu(t)− yu(t)|2 = |
∫ t

0

[f(s, x(s), u(s, x(s)))− f(s, y(s), u(s, y(s)))]ds

+

∫ t

0

[g(s, x(s), u(s, x(s)))− g(s, y(s), u(s, y(s)))]dB(s)|2

By the elementary inequality (a+ b)2 ≤ 2(a2 + b2) we get

E|xu(t)− yu(t)|2

≤ 2K(T + 1)(L+ 1)

∫ t

0

E|xu(s)− yu(s)|2ds
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By Lemma 2.4 we conclude that

E( sup
0≤t≤T

|xu(s)− yu(s)|2) = 0

that is ∫
Ω

sup
0≤s≤t

|xu(s)− yu(s)|2dp = 0 t ∈ [0, T ]

So

sup
0≤t≤T

|xu(s)− yu(s)| = 0 a.s. for all t ∈ [0, T ], u ∈ U.

That is

P{ sup
0≤t≤T

|xu(t)− yu(t)| > 0} = 0

�

Theorem 3.3. Under the conditions of Theorem 3.2, the solution of (1) satisfies

sup
0≤t≤T

E|xu(t)|2 ≤ 3{E|ξ|2 + CT (T + 1)(M + 1)}e3CT (T+1) (8)

Proof. Let

xu(t) = ξ +

∫ t

0

f(s, x(s), u(s, x(s)))ds+

∫ t

0

g(s, x(s), u(s, x(s)))dB(s)

is the solution of (1).
By the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we get

|xu(t)|2 ≤ 3{|ξ|2 + |
∫ t

0

f(s, x(s), u(s, x(s)))ds|2

+ |
∫ t

0

g(s, x(s), u(s, x(s)))dB(s)|2}

Taking the expectation on both sides, by Cauchy-Schwarz inequality and condi-
tion (2) we obtain

E|xu(t)|2

≤ 3{E|ξ|2 + T

∫ t

0

E|f(s, x(s), u(s, x(s)))|2ds

+

∫ t

0

E|g(s, x(s), u(s, x(s)))|2ds}

≤ 3{E|ξ|2 + C(T + 1)(

∫ t

0

(1 + E|xu(s)|2)ds+ TM)}

= 3E|ξ|2 + 3C(T + 1)(

∫ t

0

E|xu(s)|2ds+ TM + T )
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For any t1 ∈ [0, T ].

sup
0≤t≤t1

E|xu(t)|2

≤ 3E|ξ|2 + 3CT (T + 1)(M + 1) + 3C(T + 1)

∫ t

0

sup
0≤S≤t

E|xu(s)|2ds

So, by Lemma 2.4 we have

sup
0≤t≤T

E|xu(t)|2

≤ 3[E|ξ|2 + CT (T + 1)(M + 1)]e3CT (T+1)

which is the required assertion (8). �

4. Conclusion

For stochastic control system (1), applying the mean square linear growth
condition and mean square Lipschitz condition, we give and prove the existence
and uniqueness theorem, and then investigate the behavior of the solutions. The
main results are given in Theorem 3.2 and Theorem 3.3 in Section 3. It is shown
that if the set of control functions is a bounded set, and control function satisfies
mean square Lipschitz condition, the stochastic control system (1) has a unique
solution.
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