DOI QR코드

DOI QR Code

THE DRAZIN INVERSES OF THE SUM OF TWO MATRICES AND BLOCK MATRIX

  • Shakoor, Abdul (Department of Mathematics, Chongqing University) ;
  • Yang, Hu (Department of Mathematics, Chongqing University) ;
  • Ali, Ilyas (Department of Mathematics, Chongqing University)
  • Received : 2012.11.20
  • Accepted : 2013.01.22
  • Published : 2013.05.30

Abstract

In this paper, we give a formula of $(P+Q)^D$ under the conditions $P^2Q+QPQ=0$ and $P^3Q=0$. Then applying it to give some results of block matrix $M=(^A_C^B_D)$ (A and D are square matrices) with generalized Schur complement is zero under some conditions. Finally, numerical examples are given to illustrate our results.

Keywords

References

  1. A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, second ed., Springer, New York, 2003.
  2. S.L. Campbell and C.D. Meyer, Generalized Inverse of Linear Transformations, Dover, New York, 1991.
  3. X. Chen and R.E. Hartwig, The group inverse of a triangular matrix, Linear Algebra Appl. 237/238 (1996) 97-108. https://doi.org/10.1016/0024-3795(95)00561-7
  4. Y. Wei, X. Li and F. Bu, A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl. 27 (2005) 72-81. https://doi.org/10.1137/S0895479804439948
  5. R.E. Hartwig, X. Li and Y. Wei, Representations for the Drazin inverse of a 2${\times}$2 block matrix, SIAM J. Matrix Anal. Appl. 27 (2006) 757-771.
  6. M.P. Drazin, Pseudoinverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514. https://doi.org/10.2307/2308576
  7. R.E. Hartwig, G. Wang and Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207-217. https://doi.org/10.1016/S0024-3795(00)00257-3
  8. N. Castro-Gonzlez, Additive perturbation results for the Drazin inverse, Linear Algebra Appl. 397 (2005) 279-297. https://doi.org/10.1016/j.laa.2004.11.001
  9. N. Castro-Gonzlez, E. Dopazo and M.F. Martnez-Serrano, On the Drazin inverse of the sum of two operators and its application to operator matrices, J. Math. Anal. Appl. 350 (2008) 207-215.
  10. M.F. Martnez-Serrano and N. Castro-Gonzlez, On the Drazin inverse of block matrices and generalized Schur complement, Appl. Math. Comput. 215 (2009) 2733-2740. https://doi.org/10.1016/j.amc.2009.09.013
  11. H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math. 235 (2011) 1412-1417. https://doi.org/10.1016/j.cam.2010.08.027
  12. C. Bu, C. Feng and S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, J. Appl. Math. Comput. 218 (2012) 10226-10237. https://doi.org/10.1016/j.amc.2012.03.102
  13. N. Castro-Gonzalez, J. Robles and J.Y. Velez-Cerrada, Characterizations of a class of matrices and perturbation of the Drazin inverse, SIAM J. Matrix Anal. Appl. 30 (2008) 882-897. https://doi.org/10.1137/060653366
  14. N. Castro-Gonzalez and J.Y. Velez-Cerrada, On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces, J. Math. Anal. Appl. 34 (2008) 1213-1223.
  15. Q. Xu, C. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl. 31 (2009) 1507-1520.
  16. C. Deng, The Drazin inverses of sum and difference of idempotents, Linear Algebra Appl. 430 (2009) 1282-1291. https://doi.org/10.1016/j.laa.2008.10.017
  17. X. Liu, L. Xu and Y. Yu, The representations of the Drazin inverse of differences of two matrices, Appl. Math. Comput. 216 (2010) 3652-3661. https://doi.org/10.1016/j.amc.2010.05.016
  18. C. Deng, Dragana S. Cvetkovic-Ilic and Y. Wei, Some results on the generalized Drazin inverse of operator matrices, Linear Multilinear Algebra 58 (2010) 503-521. https://doi.org/10.1080/03081080902722642
  19. H. Yang and X. Liu, Further results on the group inverses and Drazin inverses of anti-triangular block matrices, J. Appl. Math. Comput. 218 (2012) 8978-8986. https://doi.org/10.1016/j.amc.2012.02.058
  20. J. Miao, Results of the Drazin inverse of block matrices, J. Shanghai Normal Univ. 18 (1989) 25-31 (in Chinese).
  21. Y. Wei, Expressions for the Drazin inverse of a 2${\times}$2 block matrix, Linear Multilinear Algebra 45 (1998) 131-146. https://doi.org/10.1080/03081089808818583
  22. C. Deng, Generalized Drazin inverse of anti-triangular block matrices, J. Math. Anal. Appl. 368 (2010) 1-8. https://doi.org/10.1016/j.jmaa.2010.03.003
  23. C.D. Meyer and N.J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math. 33 (1977) 1-7. https://doi.org/10.1137/0133001

Cited by

  1. Some Results for the Drazin Inverses of the Sum of Two Matrices and Some Block Matrices vol.2013, 2013, https://doi.org/10.1155/2013/804313