참고문헌
- M. Escobedo and M.A. Herrero, A semilinear parabolic system in a bounded domain, Annali di Matematica pura ed applicata CLXV (1993), 315-336.
- Ph. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations 153 (1999), 374-406. https://doi.org/10.1006/jdeq.1998.3535
- E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), 213-259. https://doi.org/10.1007/s00205-002-0208-7
- S.N. Antontsev and J.F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez. VII Sci. Mat. 52 (2006), 19-36. https://doi.org/10.1007/s11565-006-0002-9
- K. Rajagopal and M. Ruzicka, Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn. 13 (2001), 59-78. https://doi.org/10.1007/s001610100034
- R. Aboulaicha, D. Meskinea, and A. Souissia, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), 874-882. https://doi.org/10.1016/j.camwa.2008.01.017
- Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406. https://doi.org/10.1137/050624522
- S. Levine, Y. Chen, and J. Stanich, Image restoration via nonstandard diffusion. Technical Report# 04-01, Dept. of Mathematics and Computer Science, Duquesne University, 2004.
- C.V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992.
- A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, and A.P. Mikhailov, Blow-up in quasilinear parabolic equations, Walter de Gruyter, Berlin, New York, 1995.
- F.C. Li, S.X. Huang, and C.H. Xie, Global existence and blow-up of solutions to a nonlocal reaction-diffsion system, Discrete Contin. Dyn. Syst. 9 (2003), 1519-1532. https://doi.org/10.3934/dcds.2003.9.1519
- J.R. Cannon and H.M. Yin, A class of non-linear non-classical parabolic equations, J. Differential Equations 79 (1989), 266-288. https://doi.org/10.1016/0022-0396(89)90103-4
- H.L. Li and M.X. Wang, Properties of blow-up solutions to a parabolic system with nonlinear localized terms, Discrete and Continuous Dynamical Systems 13 (2005), 683-700. https://doi.org/10.3934/dcds.2005.13.683
- C.V. Pao, Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl. 166 (1992) 591-600. https://doi.org/10.1016/0022-247X(92)90318-8
- Ph. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), 1301-1334. https://doi.org/10.1137/S0036141097318900
- J.P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal. 71 (2009), 1094-1099. https://doi.org/10.1016/j.na.2008.11.030
- S.N. Antontsev and S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math. 234 (2010), 2633-2645. https://doi.org/10.1016/j.cam.2010.01.026
- R. Ferreira, A.de Pablo, M. Perez-Llanos, and J.D. Rossi, Critical exponents for a semilinear parabolic equation with variable reaction, To appear in The Royal Society of Edinburgh Proceedings A (Mathematics). (http://mate.dm.uba.ar/-jrossi/complete.html).
- X.L. Bai and S.N. Zheng, A semilinear parabolic system with coupling variable exponents, Annali di Matematica Pura ed Applicata 190 (2011), 525-537. https://doi.org/10.1007/s10231-010-0161-2