DOI QR코드

DOI QR Code

New Three-Phase Multilevel Inverter with Shared Power Switches

  • Ping, Hew Wooi (UM Power Energy Dedicated Advanced Center (UMPEDAC), University of Malaya) ;
  • Rahim, Nasrudin Abd. (UM Power Energy Dedicated Advanced Center (UMPEDAC), University of Malaya) ;
  • Jamaludin, Jafferi (UM Power Energy Dedicated Advanced Center (UMPEDAC), University of Malaya)
  • Received : 2013.05.07
  • Published : 2013.09.20

Abstract

Despite the advantages offered by multilevel inverters, one of the main drawbacks that prevents their widespread use is their circuit complexity as the number of power switches employed is usually high. This paper presents a new multilevel inverter topology with a considerable reduction in the number of power switches used through the switch-sharing approach. The fact that the proposed inverter applies two bidirectional power switches for sharing among the three phases does not prevent it from producing seven levels in the line-to-line output voltage waveforms. A modified scheme of space vector modulation via the application of virtual voltage vectors is developed to generate the PWM signals of the power switches. The performance of the proposed inverter is investigated through MATLAB/SIMULINK simulations and is practically tested using a laboratory prototype with a DSP-based modulator. The results demonstrate the satisfactory performance of the inverter and verify the effectiveness of the modulation method.

Keywords

References

  1. N. A. Rahim, K. Chaniago, and J. Selvaraj, "Single-phase seven-level grid-connected inverter for photovoltaic system," IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2435-2443, Jun. 2011. https://doi.org/10.1109/TIE.2010.2064278
  2. F. A. DeWinter and W. Bin, "Medium voltage motor harmonic heating, torques and voltage stress when applied on VFDs," in Petroleum and Chemical Industry Conference, pp. 131-139, 1996.
  3. M. Calais and V. G. Agelidis, "Multilevel converters for single-phase grid connected photovoltaic systems - an overview," in Proc. ISIE '98, pp. 224-229, 1998.
  4. Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, "A comparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1512-1521, Oct. 2006. https://doi.org/10.1109/TIE.2006.882022
  5. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," IEEE Trans. Indus. Appl., Vol. 41, No. 5, pp. 1292-1306, Sep./Oct. 2005. https://doi.org/10.1109/TIA.2005.853371
  6. J. Rodriguez, J. S. Lai, and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications, IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002. https://doi.org/10.1109/TIE.2002.801052
  7. V. G. Agelidis, A. I. Balouktsis, and M. S. A. Dahidah, "A five-level symmetrically defined selective harmonic elimination PWM strategy: analysis and experimental validation," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 19-26, Jan. 2008. https://doi.org/10.1109/TPEL.2007.911770
  8. S. Kouro, P. Lezana, M. Angulo, and J. Rodriguez, "Multicarrier PWM with DC-link ripple feedforward compensation for multilevel inverters," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 52-59, Jan. 2008. https://doi.org/10.1109/TPEL.2007.911834
  9. N. Celanovich and D. Boroyevich, "A fast space vector modulation algorithm for multilevel three-phase converters," IEEE Trans. Indus. Appl., Vol. 37, No. 2, pp. 637-641, Mar./Apr. 2001. https://doi.org/10.1109/28.913731
  10. S. Mariethoz and A. Rufer, "New configurations for the three-phase asymmetrical multilevel inverter," in Conf. Rec. 39th IAS Annual Meeting, pp. 828-835, 2004.
  11. A. Ajami and M. Armaghan, "A new concept of multilevel DVR based on mixed multi-cell cascaded topology," in Proc. ICMET 2010, pp. 398-402, 2010.
  12. S. Ramkumar, V. Kamaraj, S. Thamizharasan, and S. Jeevananthan, "A new series parallel switched multilevel dc-link inverter topology," Int. J. Elect. Power Energy Syst., Vol. 36, No. 1, pp. 93-99, Mar. 2012. https://doi.org/10.1016/j.ijepes.2011.10.028
  13. J. Zaragoza, J. Pou, S. Ceballos, E. Robles, P. Ibaez, and J. L. Villate, "A comprehensive study of a hybrid modulation technique for the neutral-point-clamped converter," IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 294-304, Feb. 2009. https://doi.org/10.1109/TIE.2008.2005132
  14. S. Vazquez, J. I. Leon, L. G. Franquelo, J. J. Padilla, and J. M. Carrasco, "DC-voltage-ratio control strategy for multilevel cascaded converters fed with a single DC source," IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2513-2521, Jul. 2009. https://doi.org/10.1109/TIE.2009.2017549
  15. V. G. Agelidis, D. M. Baker, W. B. Lawrance, and C. V. Nayar, "A multilevel PWM inverter topology for photovoltaic applications," in Proc. ISIE '97, pp. 589-594, 1997.
  16. S. J. Park, F. S. Kang, M. H. Lee, and C. U. Kim, "A new single-phase five-level PWM inverter employing a deadbeat control scheme," IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 831-843, May 2003. https://doi.org/10.1109/TPEL.2003.810837
  17. G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I. Gimenez, "A new simplified multilevel inverter topology for DC-AC conversion," IEEE Trans. Power Electron., Vol. 21, No. 5, pp. 1311-1319, Sep. 2006. https://doi.org/10.1109/TPEL.2006.880303
  18. J. Selvaraj and N. A. Rahim, "Multilevel inverter for grid-connected PV system employing digital PI controller," IEEE Trans. Ind. Electron., Vol. 56, No. 1, pp. 149-158, Jan. 2009.
  19. M. F. M. Elias, N. A. Rahim, H. W. Ping, and M. N. Uddin, "Asymmetrical transistor-clamped H-bridge cascaded multilevel inverter," in IEEE IAS Annual Meeting 2012, pp. 1-8, 2012.
  20. S. Wei, B. Wu, F. Li, and C. Liu, "A general space vector PWM control algorithm for multilevel inverters," in Proc. APEC '03, pp. 562-568, 2003.
  21. T. J. Kim, D. W. Kang, Y. H. Lee, and D. S. Hyun, "The analysis of conduction and switching losses in multilevel inverter system," in Proc. PESC 2001, pp. 1363-1368, 2001.
  22. C. Govindaraju and K. Baskaran, "Efficient hybrid carrier based space vector modulation for a cascaded multilevel inverter," J. Power Electron., Vol. 10, No. 3, pp. 277-284, May 2010. https://doi.org/10.6113/JPE.2010.10.3.277

Cited by

  1. Design and Implementation of a New Multilevel DC-Link Three-phase Inverter vol.14, pp.2, 2014, https://doi.org/10.6113/JPE.2014.14.2.292
  2. Suppression of Common-Mode Voltage Using a Multicentral Photovoltaic Inverter Topology With Synchronized PWM vol.61, pp.9, 2014, https://doi.org/10.1109/TIE.2013.2289905
  3. Comparison of Impedance-Source Networks for Two and Multilevel Buck–Boost Inverter Applications vol.31, pp.11, 2016, https://doi.org/10.1109/TPEL.2016.2569437
  4. New Three-Phase Multilevel Inverter With Reduced Number of Power Electronic Components vol.29, pp.11, 2014, https://doi.org/10.1109/TPEL.2014.2298616
  5. A Generalized Loss Analysis Algorithm of Power Semiconductor Devices in Multilevel NPC Inverters vol.9, pp.6, 2014, https://doi.org/10.5370/JEET.2014.9.6.2168
  6. Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection vol.19, pp.1, 2014, https://doi.org/10.6113/TKPE.2014.19.1.31
  7. Optimised inverter by switch sharing: a control solution for photovoltaic applications vol.10, pp.9, 2017, https://doi.org/10.1049/iet-pel.2016.0942