DOI QR코드

DOI QR Code

Single-Ended High-Efficiency Step-up Converter Using the Isolated Switched-Capacitor Cell

  • 투고 : 2013.03.02
  • 발행 : 2013.09.20

초록

The depletion of natural resources and renewable energy sources, such as photovoltaic (PV) energy, has been highlighted for global energy solution. The PV power control unit in the PV power-generation technology requires a high step-up DC-DC converter. The conventional step-up DC-DC converter has low efficiency and limited step-up ratio. To overcome these problems, a novel high step-up DC-DC converter using an isolated switched capacitor cell is proposed. The step-up converter uses the proposed transformer and employs the switched-capacitor cell to enable integration with the boost inductor. The output of the boost converter and isolated switched-capacitor cell are connected in series to obtain high step-up with low turn-on ratio. A hardware prototype with 30 V to 40 V input voltage and 340 V output voltage is implemented to verify the performance of the proposed converter. As an extended version, another novel high step-up isolated switched-capacitor single-ended DC-DC converter integrated with a tapped-inductor (TI) boost converter is proposed. The TI boost converter and isolated-switched-capacitor outputs are connected in series to achieve high step-up. All magnetic components are integrated in a single magnetic core to lower costs. A prototype hardware with 20 V to 40 V input voltage, 340 V output voltage, and 100 W output power is implemented to verify the performance of the proposed converter.

키워드

참고문헌

  1. J. H. Lee, J. H. Park, and J. H. Jeon, "Series-connected forward-flyback converter for high step-up power conversion," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3629-3641, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2162747
  2. K. B. Park, G. W. Moon, and M. J. Youn, "High step-up boost converter intergrated with a transformer-assisted auxilary circuit employing quasi-resonant operation," IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 1974-1984, Apr. 2012. https://doi.org/10.1109/TPEL.2011.2170223
  3. S. K. Changchien, T. J. Liang, and J. F. Chen, "Novel high step-up DC-DC converter for fuel cell energy conversion system", IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007-2017, Jun. 2010. https://doi.org/10.1109/TIE.2009.2026364
  4. K. Zou, Scott, M. J., Jin Wnag "A switched-capacitor voltage tripler with automatic interleaving capability," IEEE Trans. Power Electron., Vol. 27, No. 6, pp2857-2868, Jun. 2012. https://doi.org/10.1109/TPEL.2011.2178102
  5. S. Jiang, D. Cao, Y. Li, and F. Z. Peng, "Grid-connected boost-half-bridge photovoltaic microinverter system using repetitive current control and maximum power point tracking," IEEE Trans. Power Electron, Vol. 27, No. 11, pp.4711-4722, Nov. 2012. https://doi.org/10.1109/TPEL.2012.2183389
  6. F. H. Dupont, C. Rech, and R. Gules, "Reduced-order model and control approach for the boost converter with a voltage multiplier cell," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3395-3404, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2224672
  7. R. N. A. L. Silva, G .A. L. Henn, P. P. Praca, R. A. da Camara, L. H. S. C. Barreto, and D. S. Oliveira Jr., "PID digital control applied to a high voltage gain converter with soft-switching cells," Industrial Electronics (ISIE), 2010 IEEE International Symposium on., pp. 992-997, 2010.
  8. I. Laird and D. Dah-Chuan Lu, "High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 740-741, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2205162
  9. D. H. Kim, S. Moon, C. I. Kim, and J.-H. Park, "Seriesconnected isolated-switched-capacitor boost converter," IPEMC Power Electronics and Motion Control Conference, Vol. 2, pp. 1343-1346, 2012.
  10. B. Gu, J. Dominic, J. S. Lai, Z. Zhao, and C. Liu, "High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications," IEEE Trans. Power Electron, Vol. 28, No. 4, pp. 2048 -2058, Apr. 2013.
  11. P. K. Peter and V. Agarwel, "Analysis and design of a ground isolated switched capacitor DC-DC converter," Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 632-637, 2010.
  12. S. Lee, P. Kim, and S. Choi, "High step-up soft-switched converters using voltage multiplier cells," IEEE Trans. Power Electron, Vol. 28, No. 7, pp. 3379-3387, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2227508
  13. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, "Voltage multiplier cells applied to non-isolated DC-DC converters," IEEE Trans. Power Electron, Vol. 23, No. 2, pp. 871-887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  14. K. C. Tseng, C. C. Huang, and W. Y. Shih, "A high step-up converter with a voltage multiplier module for a photovoltaic system," IEEE Trans. Power Electron, Vol. 28, No. 6, pp. 3047-3057, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2217157
  15. D. Meneses, F. Blaabjerg, O. Garcia, and J. A. Cobos "Review and comparison of step-up transformerless topologies for photovoltaic AC-module application," IEEE Trans. Power Electron, Vol. 28, No. 6, pp. 2649-2663, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2227820
  16. Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65-73, Jan. 2003. https://doi.org/10.1109/TPEL.2002.807188
  17. K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," Proc. Inst. Elect. Eng.-Elect. Power Appl., Vol. 151, No. 2, pp. 182-190, Mar. 2004. https://doi.org/10.1049/ip-epa:20040022
  18. T. J. Liang and K. C. Tseng, "Analysis of integrated boostflyback step-up converter," Proc. Inst. Elect. Eng.-Electr. Power Appl., Vol. 152, No. 2, pp. 217-225, Mar. 2005. https://doi.org/10.1049/ip-epa:20045003
  19. R. J. Wai and R. Y. Duan, "High step-up converter with coupled-inductor," IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1025-1035, Sep. 2005. https://doi.org/10.1109/TPEL.2005.854023
  20. Y.-P. Hsieh, J.-F. Chen, and T.-J. Liang, "Novel high stepup DC-DC converter with coupled-inductor and switchedcapacitor techniques for a sustainable energy system," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3481-3490, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2160876
  21. H. Cheng, K. M. Smedley, and A. Abramovitz, "Wide input wide output (WIWO) DC-DC converter," IEEE Trans. Power Electron., Vol. 25, No. 2, pp. 280-289, Feb. 2010. https://doi.org/10.1109/TPEL.2009.2025375
  22. H. W. Seong, H. S. Kim, and K. B. Park, "High step-up DCDC converters using zero-voltage switching boost integration technique and light-load frequency modulation control," IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1383-1400, Mar. 2012. https://doi.org/10.1109/TPEL.2011.2162966
  23. J. W. Ahn and D. H. Lee, "Performance of passive boost switched reluctance converter for single-phase switched reluctance motor," Journal of Electrical Engineering & Technology, Vol. 6, No. 4, pp. 505-512, Jul. 2011. https://doi.org/10.5370/JEET.2011.6.4.505
  24. Q. N. Trinh and H. H. Lee, "A new z-source inverter topology with high voltage boost ability," Journal of Electrical Engineering & Technology, Vol. 7, No. 5, pp. 714-723, Sep. 2012. https://doi.org/10.5370/JEET.2012.7.5.714
  25. Do-Hyun Kim and Joung-Hu Park, "High efficiency stepdown flyback converter using coaxial cable coupledinductor," Journal of Power Electronics, Vol. 13, No. 2, pp. 214-222, Mar. 2013. https://doi.org/10.6113/JPE.2013.13.2.214

피인용 문헌

  1. Loss Analysis and Soft-Switching Behavior of Flyback-Forward High Gain DC/DC Converters with a GaN FET vol.16, pp.1, 2016, https://doi.org/10.6113/JPE.2016.16.1.84
  2. Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors vol.16, pp.5, 2016, https://doi.org/10.6113/JPE.2016.16.5.1629
  3. Lossless Snubber with Minimum Voltage Stress for Continuous Current Mode Tapped-Inductor Boost Converters for High Step-up Applications vol.14, pp.4, 2014, https://doi.org/10.6113/JPE.2014.14.4.621
  4. Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage vol.9, pp.6, 2014, https://doi.org/10.5370/JEET.2014.9.6.2004
  5. High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple vol.15, pp.6, 2015, https://doi.org/10.6113/JPE.2015.15.6.1468
  6. Analysis and Design of a High-Efficiency Boundary Conduction Mode Tapped-Inductor Boost LED Driver for Mobile Products vol.14, pp.4, 2014, https://doi.org/10.6113/JPE.2014.14.4.632