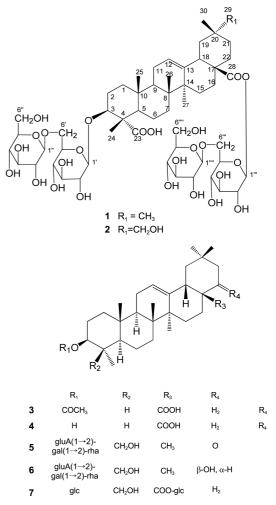
Notes

New Triterpenoid Saponins, Cowpeasaponins I and II, from Cowpea Seeds (*Vigna sinensis* K.)

En Ji Cui, Jin Gyeong Cho, In Sik Chung, Ji Young Kim,[†] Seong Gil Hong, and Nam In Baek^{*}


Graduate School of Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin 446-701, Korea *E-mail: nibaek@khu.ac.kr *Erom Life Co. Ltd., Seoul 135-825, Korea Received April 12, 2013, Accepted May 10, 2013

Key Words : Vigna sinensis, Cowpea, Leguminosae, Triterpenoid saponin, Cowpeasaponin

The cowpea (Vigna sinensis K., Leguminosae), which is commonly known as the black-eyed pea, southern pea, and crowder pea, is one of the most important legume crops for both human and animal consumption. Cowpea originated in Africa and is now widely grown in Africa, Latin America, Southeast Asia, and the southern United States.¹ Cowpea has therapeutic and protective effects in hypercholesterolemia, cardiovascular diseases, and cancers.^{2,3} Steroid glycosides and flavonoid glycosides, which promote heme oxygenase activity and an antioxidant effect have been reported in cowpea seeds.⁴⁻⁷ In our effort to identify new bioactive compounds from cowpea seeds, we isolated two new triterpenoid saponins, cowpeasaponin I (1) and cowpeasaponin II (2), along with five known compounds 3-7 (Fig. 1). All compounds were isolated from cowpea seeds for the first time. Herein, we describe the isolation and structure elucidation of the new saponins.

Compound 1 was obtained as a pale yellow amorphous powder. The IR spectrum showed the absorbance bands of hydroxyl (3365 cm⁻¹), carbonyl (1739 cm⁻¹), and double bond (1555 cm⁻¹). The molecular formula was determined to be $C_{54}H_{86}O_{25}$ from the [M-H]⁻ ion peak at m/z 1133.5389 (calculated for C54H85O25, 1133.5380) in the negative HR-FAB-MS. The spectroscopic features and physicochemical properties suggest 1 to be a triterpenoid saponin. The ¹H-NMR spectrum exhibited signals for six tertiary methyls at $\delta_{\rm H}$ 1.01 (H-24), 1.08 (H-27), 0.87 (H-25,29,30), and 0.68 (H-26), a broad singlet for an olefinic proton at $\delta_{\rm H}$ 5.17 (H-12), and an oxygenated methine proton at $\delta_{\rm H}$ 3.64 (H-3). Also, the proton signals due to four sugars, four hemiacetal protons at $\delta_{\rm H}$ 5.24, 4.22, 4.20 and 4.15, along with several oxygenated methine and methylene protons from $\delta_{\rm H}$ 3.99 to $\delta_{\rm H}$ 2.73 were observed. The ¹³C-NMR spectrum showed signals of a carboxyl (δ_c 179.8, C-23), an ester (δ_c 175.2, C-28), an olefinic quaternary ($\delta_{\rm C}$ 143.5, C-13), an olefinic methine ($\delta_{\rm C}$ 121.6, C-12), an oxygenated methine ($\delta_{\rm C}$ 83.2, C-3), and six methyl carbons (δ_c 32.8, 25.0, 23.5, 16.7, 15.5, 12.0) for the aglycone moiety. These data indicated that 1 is an olean-12-ene-28-oic skeleton. The locations of the carboxyl group at C-23 and the ester at C-28 were determined by the HMBC correlations between $\delta_{\rm H}$ 1.01 (H-24)/ $\delta_{\rm C}$ 179.8 (C-23) and $\delta_{\rm H}$ 1.01 (H-24)/ $\delta_{\rm C}$ 51.9(C-4), between $\delta_{\rm H}$

2.75 (H-18)/ $\delta_{\rm C}$ 175.2 (C-28) and $\delta_{\rm H}$ 2.75 (H-18)/ $\delta_{\rm C}$ 47.3 (C-17). And the double bond position at C-12 was determined by the observation of cross-peaks between $\delta_{\rm H}$ 5.17 (H-12)/ $\delta_{\rm C}$ 40.8 (C-18) and $\delta_{\rm H}$ 5.17 (H-12)/ $\delta_{\rm C}$ 41.4 (C-14) (Fig. 2). The ¹³C-NMR signals of four sugars, that is, four hemiacetal carbons at $\delta_{\rm C}$ 103.4, 103.2, 103.1, 94.1, 20 oxygenated methine carbons from $\delta_{\rm C}$ 76.8 to $\delta_{\rm C}$ 69.4, and two oxy-

Figure 1. Chemical structures of compounds 1-7. gluA: β -D-glucuronic acid; gal: β -D-galatopyranose; glc: β -D-glucopyranose; rha: α -L-rhamopyranose.

genated methylene carbons at $\delta_{\rm C}$ 68.0, 61.3, 68.5 and 61.2, indicated the presence of two glucopyranosyl $(1\rightarrow 6)$ -glucopyranoside moieties. The coupling constants of four anomer proton signals (J = 8.0, 7.2, 7.6, 7.6 Hz) confirmed all anomeric hydroxyl groups were in a β -configuration. The FAB-MS spectrum showed a quasi-molecular ion at m/z1133 [M-H]⁻, confirming a molecular weight of 1134. An ion at m/z 809 [M-H-324]⁻ suggested the presence of a disaccharide unit including two hexoses at C-28 of the aglycone, which was confirmed from the chemical shifts of the anomer carbon C-1" (δ_C 94.1).⁸ In addition, the intense ion peaks at m/z 647 [M-H-324-162]- and 485 [M-H-324-162-162]⁻ also indicated the presence of a disaccharide unit at C-3, which was confirmed by the downfield shift of C-3 owing to the glycosidation effect.8 So the 3-hydroxy and 28carbonyl groups possessed the same type of disaccharide chain. Consequently, compound 1 should be a bisdesmosidic saponin in which the disaccharide chain of two glucoses is bound to the aglycone by a glycosidic linkage at C-3, while a disaccharide chain of two glucoses is bound by a glycosidic ester linkage at C-28. The sugar arrangements were determined by the HMBC which showed the correlations between an anomeric proton signal at $\delta_{\rm H}$ 4.15 (glc-1') and an oxygenated methine carbon signal at $\delta_{\rm C}$ 83.2 (C-3), between another anomeric proton at $\delta_{\rm H}$ 5.24 (glc-1") and the ester at $\delta_{\rm C}$ 175.2 (C-28). Additionally, the cross peak between an anomer proton signal at $\delta_{\rm H}$ 4.20 (glc-1") and an oxygenated methylene carbon signal at $\delta_{\rm C}$ 68.0 (3-glc-6'), between the other anomer proton signal at δ_H 4.22 (glc-1"") and the other oxygenated methylene carbon signal at $\delta_{\rm C}$ 68.5 (28-glc-6''') in the HMBC spectrum suggested a $1\rightarrow 6$ connection between each of the two sugar units (Fig. 2). This was confirmed by the downfield shifts of C-6' (δ_C 68.0) and C-6'' $(\delta_{\rm C} 68.5)$.⁹ On the basis of these data, compound 1 was determined to be a new compound, named cowpeasaponin I, which was established as 3-O- β -D-glucopyranosyl-(1 \rightarrow 6)β-D-glucopyranosyloleane-12-en-23,28-dioic acid 28-O-β-D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside.

Compound 2 was obtained as a pale yellow amorphous powder. The IR spectrum showed the absorbance bands due to hydroxyl (3335 cm⁻¹), carbonyl (1742 cm⁻¹), and double bond (1559 cm⁻¹). The molecular formula was determined to be $C_{54}H_{86}O_{26}$ from the [M-H]⁻ peak at m/z 1149.5326 (calculated for C54H85O26, 1149.5329) in the negative HR-FAB-MS. The ¹H-NMR and ¹³C-NMR spectra of 2 were very similar to those of compound 1, with the exception of an oxygenated methylene signal (δ_H 3.34, δ_C 64.2) instead of a methyl moiety. Compared to C-30 (δ_C 23.5) and C-20 (δ_C 30.3) of compound 1, the corresponding carbon signals of compound **2** were shifted downfield to δ_C 28.5 and δ_C 35.8, indicating the position of the oxygenated methylene was C-29. It was also confirmed from the cross peaks between H-29 ($\delta_{\rm H}$ 3.34)/C-30 ($\delta_{\rm C}$ 28.5) and those between C-29 ($\delta_{\rm C}$ 64.2)/H-30 ($\delta_{\rm H}$ 0.80) in the HMBC spectrum. On the basis of the above observations, compound 2 was also found to be a new compound, named cowpeasaponin II, which was established as $3-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 6)-\beta$ -D-glucoNotes

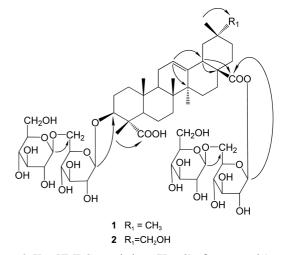


Figure 2. Key HMBC correlations $(H \rightarrow C)$ of compound 1 and 2.

pyranosyl oleane29-hydroxy-12-en-23,28-dioic acid 28-O- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside.

Compounds 3-7 were identified as oleanolic acetate (3), oleanolic acid (4), dehydrosoyasaponin I (5), soyasaponin I (6), and lucynoside E (7), respectively, by comparison of the spectroscopic data with those in the literatures.¹⁰⁻¹⁴ This is the first report on the isolation of these compounds from cowpea seeds.

Experimental

Plant Materials. Cowpea seeds were collected at Yeoncheon-gun, Gyeonggi-do in December, 2008 and identified by Dr. Tae Jung Ha, National Institute of Crop Science, Rural Development Administration, Miryang, Korea. A voucher specimen (KHU081230) is reserved at Natural Products Chemistry Laboratory, Kyung Hee University, Yongin, Korea.

Extraction and Isolation. Cowpea seeds (9 kg) were extracted with 80% MeOH (20 L \times 3) three times at room temperature. The concentrated MeOH extract (452 g) were suspended in H₂O (3 L), and then extracted successively with EtOAc (3 L \times 3) and *n*-BuOH (2.8 L \times 3), and concentrated to afford the residues of EtOAc fraction (18 g, VSE), *n*-BuOH fraction (62 g, VSB), and H₂O fraction (372 g, VSH), respectively.

The EtOAc extracts (18 g) were applied to a SiO₂ (70-230 mesh) column (10 × 16 cm) chromatography (c.c.) and eluted with *n*-hexane-EtOAc (2:1 \rightarrow 1:1 \rightarrow 1:3 \rightarrow CHCl₃-MeOH = 15:1 \rightarrow 10:1 \rightarrow 7:1 \rightarrow 5:1 \rightarrow 3:1) to afford 15 fractions (VSE-1 to VSE-15). VSE-1 (276 mg) was subjected to the SiO₂ c.c. and eluted with *n*-hexane-EtOAc (1:1) to give nine fractions (VSE-1-1 to VSE-1-9) including a purified compound **3** [VSE-1-4, 60 mg, TLC (SiO₂ F₂₅₄) R_f 0.75, *n*-hexane-EtOAc = 2:1]. VSE-2 (176 mg) was subjected to the SiO₂ c.c. and eluted with *n*-hexane-EtOAc (6:1) to yield 14 fractions. VSE-2-8 (31 mg) was subjected to an ODS c.c. and eluted with MeOH-H₂O (7:1) to give six fractions (VSE-2-1 to VSE-2-6) including a purified compound **4** [VSE-2-8-5, 13 mg, TLC (ODS F₂₅₄) R_f 0.20, MeOH-H₂O = 10:1].

Notes

The *n*-BuOH extracts (60 g) were chromatographed on SiO_2 $(10 \times 12 \text{ cm})$ with CHCl₃-MeOH-H₂O $(20:3:1 \rightarrow 13:3:1 \rightarrow$ $8:3:1 \rightarrow 6:4:1$) to afford 20 fractions (VSB-1 to VSB-20). VSB-17 (1.5 g) was subjected to the SiO₂ c.c. and eluted with CHCl₃-MeOH-H₂O (8:3:1) to afford 17 fractions (VSB-17-1 to VSB-17-17). VSB-17-15 (300 mg) was subjected to the ODS c.c. and eluted with MeOH-H₂O (3:2) to yield seven fractions (VSB-17-15-1 to VSB-17-15-7). VSB-17-15-4 (110 mg) was subjected to the ODS c.c. and eluted with MeOH-H₂O (1:1) to give three fractions (VSB-17-15-4-1 to VSB-17-15-4-3) including a purified compound 5 [VSB-17-15-4-3, 12 mg, TLC (ODS F_{254} s) $R_f 0.48$, MeOH-H₂O = 3:1]. VSB-18 (3.9 g) was subjected to the flash c.c. (SNAP Cartrige KP-Sil 100 g, Biotage[®], Uppsala, Sweden) eluting with CHCl₃-MeOH (3:1) to produce three fractions (VSB-18-1 to VSB-18-3). VSB-18-3 (2.8 g) was purified by the ODS c.c. eluting with MeOH-H₂O (3:2) to give four fractions (VSB-18-3-1 to VSB-18-3-4) including a purified compound 6 [VSB-18-3-2, 60 mg, TLC (ODS F_{254} s) R_f 0.45, MeOH-H₂O = 3:1]. The H₂O extracts (372 g) were applied to Diaion HP-20 c.c. and eluted with H₂O and MeOH to afford H₂O fraction (VSH-H) and MeOH fraction (VSH-M). VSH-M fraction (17 g) were chromatographed on the SiO₂ (10 \times 12 cm) and eluted with CHCl₃-MeOH-H₂O $(7:3:1 \rightarrow 65:35:10 \rightarrow 6:4:1)$ to provide 18 fractions (VSH-M-1 to VSH-M-18). VSH-M-8 (2.6 g) was subjected to the SiO₂ c.c. and eluted with CHCl₃-MeOH-H₂O (7:3:1) to afford seven fractions (VSH-M-8-1 to VSH-M-8-7). VSH-M-8-4 (363 mg) was subjected to the ODS c.c. and eluted with MeOH-H₂O (1:3) to give ten fractions (VSH-M-8-4-1 to VSH-M-8-4-10) including a purified compound 7 [VSH-M-8-4-5, 12 mg, TLC (ODS F_{254s}) $R_f 0.65$, MeOH-H₂O = 2:1]. VSH-M-12 (1.8 g) was subjected to the SiO_2 c.c. and eluted with CHCl₃-MeOH-H₂O (65:35:10) to afford nine fractions (VSH-M-12-1 to VSH-M-12-9). VSH-M-12-6 (857 mg) was purified by the ODS c.c. to give nine fractions (VSH-M-12-6-1 to VSH-M-12-6-9). VSH-M-12-6-9 (224 mg) was subjected to the ODS c.c. and eluted with MeOH-H₂O (1:2) to give nine fractions (VSH-M-12-6-9-1 to VSH-M-12-6-9-9) including a purified compound 1 [VSH-M-12-6-9-5, 37 mg, TLC (ODS F_{254S}) $R_f 0.48$, MeOH-H₂O = 2:1]. VSH-M-15 (899 mg) was subjected to the ODS c.c. and eluted with MeOH-H₂O (2:3) to afford seven fractions (VSH-M-15-1 to VSH-M-15-7). VSH-M-15-3 (490 mg) was subjected to the ODS c.c. and eluted with MeOH-H₂O (1:2) to afford five fractions (VSH-M-15-3-1 to VSH-M-15-3-5). VSH-M-15-3-2 (321 mg) was subjected to the ODS c.c. and eluted with MeOH-H₂O (1:3) to give three fractions (VSH-M-15-3-2-1 to VSH-M-15-3-2-3) including a purified compound 2 [VSH-M-15-3-2-3, 52 mg, TLC (ODS F₂₅₄s) R_f 0.20, MeOH-H₂O = 1:1].

Cowpeasaponin I (1): Pale yellow amorphous powder; mp 268-270 °C; $[\alpha]_D$ +4.2° (c = 0.07, 20% MeOH); IR (KBr, v) 3365, 1739, 1555 cm⁻¹; negative HR-FAB/MS *m/z*: 1133.5389 [M-H]⁻ (calcd for C₅₄H₈₅O₂₅, 1133.5380); ¹H-NMR (400 MHz, DMSO-*d*₆) δ 5.24 (1H, d, J = 8.0 Hz, glc-1""), 5.17 (1H, br. s, H-12), 4.22 (1H, d, J = 7.2 Hz, glc-1""),

Table 1. 13 C-NMR chemical shifts (100 MHz) of 1 and 2 in DMSO- d_6

NO.	Aglycone		NO	Sugar	
	1	2	NO.	1	2
1	38.2	38.5	C-3		
2	25.5	25.1	Glucose		
3	83.2	84.9	1'	103.2	103.4
4	51.9	50.5	2'	72.4	72.4
5	51.0	52.1	3'	76.6	75.7
6	20.2	20.4	4'	69.4	69.3
7	32.1	32.2	5'	76.7	76.4
8	39.9	41.5	6'	68.0	68.1
9	48.6	47.3	Glucose		
10	35.9	35.8	1"	103.1	103.2
11	23.0	23.0	2"	74.0	73.9
12	121.6	121.7	3"	76.6	76.1
13	143.5	143.4	4"	70.3	70.6
14	41.4	40.1	5"	76.7	76.6
15	27.3	27.1	6"	61.3	61.5
16	23.6	23.0	C-28		
17	47.3	45.9	Glucose		
18	40.8	39.7	1'''	94.1	94.2
19	46.0	40.3	2'''	73.5	73.5
20	30.3	35.8	3'''	76.8	76.7
21	33.3	34.7	4'''	70.0	70.0
22	31.7	28.5	5'''	76.8	77.4
23	179.8	181.4	6'''	68.5	68.5
24	12.0	12.7	Glucose		
25	15.5	15.6	1""	103.4	103.5
26	16.7	16.8	2""	73.6	73.6
27	25.0	25.6	3""	76.7	76.7
28	175.2	175.3	4""	70.2	70.2
29	32.8	64.2	5""	76.8	76.8
30	23.5	28.5	6""	61.2	61.2

4.20 (1H, d, J = 7.6 Hz, glc-1"), 4.15 (1H, d, J = 7.6 Hz, glc-1'), 3.64 (1H, m, H-3), 1.08 (3H, s, H-27), 1.01 (3H, s, H-24), 0.87 (9H, s, H-25, 29, 30), 0.68 (3H, s, H-26); ¹³C-NMR (100 MHz, DMSO- d_6): see Table 1.

Cowpeasaponin II (2): Pale yellow amorphous powder; mp 255-260 °C; $[\alpha]_D$ +19.6° (c = 0.04, 20% MeOH); IR (KBr, v) 3335, 1742, 1559 cm⁻¹; negative HR-FAB/MS m/z: 1149.5326 [M-H]⁻ (calcd for C₅₄H₈₅O₂₆, 1149.5329); ¹H-NMR (400 MHz, DMSO- d_6) δ 5.24 (1H, d, J = 8.0 Hz, glc-1"), 5.18 (1H, br. s, H-12), 4.20 (1H, d, J = 8.0 Hz, glc-1""), 4.19 (1H, d, J = 7.6 Hz, glc-1"), 4.1 (1H, d, J = 7.6 Hz, glc-1'), 3.76 (1H, m, H-3), 3.34 (1H, m, H-29), 1.10 (3H, s, H-27), 0.94 (3H, s, H-24), 0.85 (3H, s, H-25), 0.80 (3H, s, H-30), 0.67 (3H, s, H-26); ¹³C-NMR (100 MHz, DMSO- d_6): see Table 1.

Acknowledgments. This study was supported by the Next-Generation Bio-Green 21 Program (PJ009574), Rural Development Administration, Republic of Korea.

Supporting Information. The general experimental pro-

cedures and the spectroscopic data of 1 and 2 are available on request from the corresponding author.

References

- 1. Lee, T. B. Flora of Korea; Hyangmunsa: Seoul, 2003; p 627.
- Chau, C. F.; Cheung, P. C. K.; Wong, Y. S. J. Agric. Food Chem. 1998, 46, 3698.
- 3. Castle, E. P.; Thrasher, J. B. Urol. Clin. North Am. 2002, 29, 71.
- Gaydou, E. M.; Bianchini, J. P.; Ratovohery, J. V. J. Agric. Food Chem. 1983, 31, 833.
- Cui, E. J.; Park, H. J.; Wu, Q.; Chung, I. S.; Kim, J. Y.; Baek, N. I. J. Appl. Biol. Chem. 2010, 53, 77.
- Cui, E. J.; Park, J. H.; Park, H. J.; Chung, I. S.; Kim, J. Y.; Yeon, S. W.; Baek, N. I. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 362.

- Cui, E. J.; Song, N. Y.; Shrestha, S.; Chung, I. S.; Kim, J. Y.; Jeong, T. S.; Beak, N. I. Food Sci. Biotechonol. 2012, 21, 619.
- Murakami, T.; Hirano, K.; Yoshikawa, M. Chem. Pharm. Bull. 2001, 49, 776.
- Xu, Y. J.; Bai, L.; Liu, Y. H.; Liu, Y.; Xu, T. H.; Xie, S. X.; Si, Y. S.; Zhou, H. O.; Liu, T. H.; Xu, D. M. *Molecules* 2010, *15*, 1891.
- Kolak, U.; Topcu, G.; Birteksoz, S.; Otuk, G.; Ulubelen, A. Turk. J. Chem. 2005, 29, 177.
- 11. Hichri, F.; Jannet, H. B.; Cheriaa, J.; Jegham, S.; Mighri, Z. C. R. Chimie. 2003, 6, 473.
- Suzuki, K.; Doi, S.; Yahara, S.; Uyeda, M. J. Enzym. Inhib. Med. Chem. 2003, 18, 497.
- Tsunoda, Y.; Okawa, M.; Kinjo, J.; Ikeda, T.; Nohara, T. Chem. Pharm. Bull. 2008, 56, 1138.
- Tsunematsu, T. Jpn. Kokai Tokkyo Koho; Yakuhin: Kenkyusho, K. K., Osaka, 1985; p 9.