DOI QR코드

DOI QR Code

Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization

  • Xu, Jiakun (Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agruculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Ju, Caixia (Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agruculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Sheng, Jun (Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agruculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Wang, Fang (Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agruculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Zhang, Quan (Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agruculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Sun, Guolong (Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agruculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Sun, Mi (Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agruculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences)
  • Received : 2013.04.22
  • Accepted : 2013.05.20
  • Published : 2013.08.20

Abstract

We demonstrate herein the synthesis and modification of magnetic nanoparticles and its use in the immobilization of the lipase. Magnetic $Fe_3O_4$ nanoparticles (MNPs) were prepared by simple co-precipitation method in aqueous medium and then subsequently modified with tetraethyl orthosilicate (TEOS) and 3-aminopropyl triethylenesilane (APTES). Silanization magnetic nanoparticles (SMNP) and amino magnetic nanomicrosphere (AMNP) were synthesized successfully. The morphology, structure, magnetic property and chemical composition of the synthetic MNP and its derivatives were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analyses (TGA). All of these three nanoparticles exhibited good crystallization performance, apparent superparamagnetism, and the saturation magnetization of MNP, SMNP, AMNP were 47.9 emu/g, 33.0 emu/g and 19.5 emu/g, respectively. The amino content was 5.66%. The AMNP was used to immobilize lipase, and the maximum adsorption capacity of the protein was 26.3 mg/g. The maximum maintained activity (88 percent) was achieved while the amount of immobilized lipase was 23.7 mg $g^{-1}$. Immobilization of enzyme on the magnetic nanoparticles can facilitate the isolation of reaction products from reaction mixture and thus lowers the cost of enzyme application.

Keywords

References

  1. Jang, J. H.; Lim, H. B. Microchem. J. 2010, 94, 148. https://doi.org/10.1016/j.microc.2009.10.011
  2. Dios, A. S.; Diaz-Garcia, M. E. Anal. Chim. Acta 2010, 666, 1. https://doi.org/10.1016/j.aca.2010.03.038
  3. Park, H. J.; McConnell, J. T.; Boddohi, S.; Kipper, M. J.; Johnson, P. A. Colloids Surf., B 2011, 83, 198. https://doi.org/10.1016/j.colsurfb.2010.11.006
  4. Gong, J. L.; Liang, Y.; Huang, Y.; Chem, J. W.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Biosens. Bioelectron. 2007, 22, 1501. https://doi.org/10.1016/j.bios.2006.07.004
  5. Qi, H.; Li, S. Q.; Liang, L.; Ling, C.; Gao, Q.; Zhang, C. Spectrochim. Acta, Part A 2011, 82, 498. https://doi.org/10.1016/j.saa.2011.07.087
  6. Sung, Y. J.; Suk, H. J.; Sung, H. Y.; Li, T.; Poo, H.; Kim, M. G. Biosens. Bioelectron. 2013, 43, 432. https://doi.org/10.1016/j.bios.2012.12.052
  7. Xuan, J.; Jia, X. D.; Jiang, L. P.; Abdel-Halim, E. S.; Zhu, J. J. Bioelectrochemistry 2012, 84, 32. https://doi.org/10.1016/j.bioelechem.2011.10.007
  8. Li, J.; Zhou, Y.; Li, M.; Xia, N.; Huang, Q. Y.; Do, H.; Liu, Y. N.; Zhou, F. M. J. Nanosci. Nanotechno. 2011, 11, 10187. https://doi.org/10.1166/jnn.2011.5002
  9. Sayin, S.; Ozcan, F.; Yilmaz, M. Mater. Sci. Eng., C 2013, 33, 2433. https://doi.org/10.1016/j.msec.2013.02.004
  10. Klostergaard, J.; Seeney, C. E. Maturitas. 2012, 73, 33. https://doi.org/10.1016/j.maturitas.2012.01.019
  11. Hua, M. Y.; Liu, H. L.; Yang, H. W.; Chen, P. Y.; Tsai, R. Y.; Huang, C. Y.; Tseng, I. C.; Lyu, L. A.; Ma, C. C.; Tang, H. J.; Yen, T. C.; Wei, K. C. Biomaterials 2011, 32, 516. https://doi.org/10.1016/j.biomaterials.2010.09.065
  12. Mahapatra, A.; Mishra, B. G.; Hota, G. Ceram. Int. 2013, 39, 5443. https://doi.org/10.1016/j.ceramint.2012.12.052
  13. Girginova, S.; Daniel-da-Silva, A. L.; Lopes, C. B.; Figueira, P.; Otero, M.; Amaral, V. S.; Pereira, E.; Trindade, T. J. Colloid Interface Sci. 2010, 345, 234. https://doi.org/10.1016/j.jcis.2010.01.087
  14. Anirudhan, T. S.; Rauf, T. A. Colloids Surf., B 2013, 107, 1. https://doi.org/10.1016/j.colsurfb.2013.01.063
  15. Tran, D. T.; Chen, C. L.; Chang, J. S. J. Biotechnol. 2012, 158, 112. https://doi.org/10.1016/j.jbiotec.2012.01.018
  16. Jiang, Y. Y.; Guo, C.; Xia, H. S.; Mahmood, I.; Liu, C. Z.; Liu, H. Z. J. Mol. Catal. B: Enzym. 2009, 58, 103. https://doi.org/10.1016/j.molcatb.2008.12.001
  17. Liao, H. D.; Chen, D.; Yuan, L.; Zheng, M.; Zhu, Y. H.; Liu, X. M. Carbohydr. Polym. 2010, 82, 600. https://doi.org/10.1016/j.carbpol.2010.05.021
  18. Gokhale, A. A.; Lu, J.; Lee, I. J. Mol. Catal. B: Enzym. 2013, 90, 76. https://doi.org/10.1016/j.molcatb.2013.01.025
  19. Mahmood, I.; Ahmad, I.; Chen, G.; Liu, H. Z. Biochem. Eng. J. 2013, 73, 72. https://doi.org/10.1016/j.bej.2013.01.017
  20. Liang, H. F.; Wang, Z. C. Mater. Chem. Phys. 2010, 124, 964. https://doi.org/10.1016/j.matchemphys.2010.07.073
  21. Liu, X.; Lei, L.; Li, Y. F.; Zhu, H.; Cui, Y. J.; Hu, H. Y. Biochem. Eng. J. 2011, 56, 142. https://doi.org/10.1016/j.bej.2011.05.013
  22. Li, Z. L.; Wang, Y. J.; Sheng, J.; Liu, J. Z.; Sun, M. Oceanologia Et Limnologia Sinica 2012, 43, 230.
  23. Shao, T. J.; Sun, M.; Zheng, J. S.; Wang, Y. J.; Qiu, X. B. Acta Microbiologica Sinica 2004, 44, 789.
  24. Dong, H. W.; Sun, M.; Wang, Y. J.; Yu, J. S. Oceanologia Et Limnologia Sinica 2004, 35, 376.
  25. Schultz, N.; Syldatk, C.; Franzreb, M.; Hobley, T. J. J. Biotechnol. 2007, 132, 202. https://doi.org/10.1016/j.jbiotec.2007.05.029
  26. Kuo, C. H.; Liu, Y. C.; J. Chang, C. M.; Chen, J. H.; Chang, C.; Shieh, C. J. Carbohydr. Polym. 2012, 87, 2538. https://doi.org/10.1016/j.carbpol.2011.11.026
  27. Cui, Y. J.; Li, Y. F.; Yang, Y.; Liu, X.; Lei, L.; Zhou, L.; Pan, F. J. Biotechnol. 2010, 150, 171.
  28. Bradford, M. M. Anal. Biochem. 1976, 72, 248. https://doi.org/10.1016/0003-2697(76)90527-3
  29. Hatzinikolaou, D. G.; Kourentzi, E.; Stamatis, H.; Christakopoulos, P.; Kolisis, F. N.; Kekos, D.; Macris, B. J. J. Biosci Bioeng. 1999, 88, 53. https://doi.org/10.1016/S1389-1723(99)80175-3
  30. Park, J. O.; Rhee, K. Y.; Park, S. J. Appl. Surf. Sci. 2010, 256, 6945. https://doi.org/10.1016/j.apsusc.2010.04.110

Cited by

  1. A Green Approach towards the Synthesis of Enantio Pure Diols Using Horse Radish Peroxidase Enzyme Immobilized on Magnetic Nanoparticles vol.04, pp.01, 2014, https://doi.org/10.4236/gsc.2014.41003
  2. Bio and Nanomaterials Based on Fe3O4 vol.19, pp.12, 2014, https://doi.org/10.3390/molecules191221506
  3. Application of Iron Magnetic Nanoparticles in Protein Immobilization vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190811465
  4. A comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens vol.12, pp.9, 2015, https://doi.org/10.1007/s13738-015-0626-8
  5. Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production vol.24, pp.12, 2017, https://doi.org/10.1007/s10570-017-1517-1
  6. Nanoparticles vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11187
  7. Aflatoxin M1 detoxification from infected milk using Fe3O4 nanoparticles attached to specific aptamer pp.2193-8865, 2018, https://doi.org/10.1007/s40097-017-0250-5
  8. Effect of a double-structured microporous polymer support on the catalytic activity, stability and aggregation behavior of immobilized enzymes vol.64, pp.7, 2015, https://doi.org/10.1002/pi.4865
  9. Synthesis and characterization of Ni(II) complex functionalized silica-based magnetic nanocatalyst and its application in C–N and C–C cross-coupling reactions pp.1573-501X, 2019, https://doi.org/10.1007/s11030-018-9888-2
  10. Equilibrium and kinetic study of novel methyltrimethoxysilane magnetic titanium dioxide nanocomposite for methylene blue adsorption from aqueous media vol.32, pp.6, 2018, https://doi.org/10.1002/aoc.4331
  11. Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol pp.1559-0291, 2019, https://doi.org/10.1007/s12010-018-02947-2
  12. Efficient bulk scale synthesis of popular pesticide synthon: tetrachlorothiophene vol.3, pp.3, 2013, https://doi.org/10.1080/2055074x.2017.1327472
  13. Mechanistic and energetic studies of superparamagnetic iron oxide nanoparticles as a cyclophosphamide anticancer drug nanocarrier: A quantum mechanical approach vol.44, pp.1, 2013, https://doi.org/10.1177/1468678319825689
  14. A comprehensive review of biodiesel production methods from various feedstocks vol.10, pp.3, 2013, https://doi.org/10.1080/17597269.2016.1204584
  15. Synthesis of Fe3O4@SiO2 magnetic nanoparticle, functionalized with 2,6-pyridine dicarboxylic acid vol.49, pp.5, 2013, https://doi.org/10.1080/24701556.2019.1574819
  16. Stability evaluation of 6-phosphogluconate dehydrogenase immobilized on amino-functionalized magnetic nanoparticles vol.49, pp.6, 2013, https://doi.org/10.1080/10826068.2019.1591990
  17. Targeted Drug Delivery of Teniposide by Magnetic Nanocarrier vol.16, pp.4, 2013, https://doi.org/10.2174/1573413715666190709114859
  18. Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Eq vol.59, pp.48, 2013, https://doi.org/10.1021/acs.iecr.0c03883
  19. Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1 vol.32, pp.3, 2013, https://doi.org/10.1088/1361-6528/abbe58
  20. Preparation and application of Fe3O4@ SiO2@ poly (o-phenylenediamine) nanoparticles as a novel magnetic sorbent for the solid-phase extraction of tellurium in water sa vol.165, pp.None, 2013, https://doi.org/10.1016/j.microc.2021.106104
  21. Magnetic solid-phase extraction using metal–organic framework-based biosorbent followed by ligandless deep-eutectic solvent-ultrasounds-assisted dispersive liquid–liquid microextraction (D vol.166, pp.None, 2013, https://doi.org/10.1016/j.microc.2021.106209
  22. A magnetically separable acid-functionalized nanocatalyst for biodiesel production vol.305, pp.None, 2021, https://doi.org/10.1016/j.fuel.2021.121576
  23. A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts vol.105, pp.None, 2013, https://doi.org/10.1016/j.jfca.2021.104261