DOI QR코드

DOI QR Code

Catalytic Pyrolysis of Cellulose over SAPO-11 Using Py-GC/MS

  • Lee, In-Gu (Korea Institute of Energy Research) ;
  • Jun, Bo Ram (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Kang, Hyeon Koo (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Jung, Sang-Chul (Department of Environmental Engineering, Sunchon National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Chang Hyun (School of Applied Chemical Engineering, Chonnam National University) ;
  • Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
  • Received : 2013.04.20
  • Accepted : 2013.05.17
  • Published : 2013.08.20

Abstract

The catalytic pyrolysis of cellulose was carried out over SAPO-11 for the first time. Pyrolyzer-gas chromatography/mass spectroscopy was used for the in-situ analysis of the pyrolysis products. The acid sites of SAPO-11 converted most levoglucosan produced from the non-catalytic pyrolysis of cellulose to furans. In particular, the selectivity toward light furans, such as furfural, furan and 2-methyl furan, was high. When the catalyst/cellulose ratio was increased from 1/1 to 3/1 and 5/1, the increase in the quantity of acid sites led to the promotion of deoxygenation and the resultant increase of the contents of light furan compounds. Because furans can be used as basic feedstock materials, the augmentation of the economical value of bio-oil through the catalytic upgrading over SAPO-11 is considerable.

Keywords

References

  1. Kang, S. W.; Kwak, Y. H.; Cheon, K. H.; Park, S. H.; Jeon, J. K.; Park, Y. K. Appl. Chem. Eng. 2011, 22, 429.
  2. Park, I. H.; Park, Y. K.; Lee, Y. M.; Bae, W.; Kwak, Y. H.; Cheon, K. H.; Park, S. H. Appl. Chem. Eng. 2011, 22, 286.
  3. Yoo, K. S.; Park, S. H.; Park, Y. K. Appl. Chem. Eng. 2011, 22, 627.
  4. Ko, C. H.; Park, S. H.; Jeon, J. K.; Suh, D. J.; Jeong, K. E.; Park, Y. K. Korean J. Chem. Eng. 2012, 29, 1657. https://doi.org/10.1007/s11814-012-0199-5
  5. Jo, Y. B.; Park, S. H.; Jeon, J. K.; Park, Y. K. Appl. Chem. Eng. 2012, 23, 604.
  6. Jo, Y. B.; Jeon, J. K.; Park, S. H.; Park, Y. K. Appl. Chem. Eng. 2012, 23, 344.
  7. Yu, M. J.; Jo, Y. B.; Kim, S. G.; Lim, Y. K.; Jeon, J. K.; Park, S. H.; Kim, S. S.; Park, Y. K. Korean J. Chem. Eng. 2011, 28, 2011.
  8. Kim, J. W.; Lee, S. H.; Kim, S. S.; Park, S. H.; Jeon, J. K.; Park, Y. K. Korean J. Chem. Eng. 2011, 28, 1867. https://doi.org/10.1007/s11814-011-0176-4
  9. Park, H. J.; Park, K. H.; Jeon, J. K.; Kim, J.; Ryoo, R.; Jeong, K. E.; Park, S. H.; Park, Y. K. Fuel 2012, 97, 379. https://doi.org/10.1016/j.fuel.2012.01.075
  10. Kim, Y. M.; Lee, H. W.; Lee, S. H.; Kim, S. S.; Park, S. H.; Jeon, J. K.; Kim, S. D.; Park, Y. K. Korean J. Chem. Eng. 2011, 28, 2012. https://doi.org/10.1007/s11814-011-0177-3
  11. Park, H. J.; Heo, H. S.; Jeon, J. K.; Kim, J. N.; Ryoo, R.; Jeong, K. E.; Park, Y. K. Appl. Catal. B: Environ. 2010, 95, 365. https://doi.org/10.1016/j.apcatb.2010.01.015
  12. Heo, H. S.; Park, H. J.; Yim, J. H.; Sohn, J. M.; Park, J.; Kim, S. S.; Ryu, C.; Jeon, J. K.; Park, Y. K. Bioresour. Technol. 2010, 101, 3672. https://doi.org/10.1016/j.biortech.2009.12.078
  13. Park, Y. K.; Choi, S. J.; Jeon, J. K.; Park, S. H.; Ryoo, R.; Kim, J.; Jeong, K. E. J. Nanosci. Nanotechnol. 2012, 12, 5367. https://doi.org/10.1166/jnn.2012.6412
  14. Park, H. J.; Heo, H. S.; Yoo, K. S.; Yim, J. H.; Sohn, J. M.; Jeong, K. E.; Jeon, J. K.; Park, Y. K. J. Ind. Eng. Chem. 2011, 17, 549. https://doi.org/10.1016/j.jiec.2010.11.002
  15. Park, H. J.; Jeon, J. K.; Suh, D. J.; Suh, Y. W.; Heo, H. S.; Park, Y. K. Catal. Surv. Asia 2011, 15, 161. https://doi.org/10.1007/s10563-011-9119-7
  16. Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Chem. Soc. Rev. 2012, 41, 8075. https://doi.org/10.1039/c2cs35188a
  17. Lee, H. W.; Kim, T. H.; Park, S. H.; Jeon, J. K.; Suh, D. J.; Park, Y. K. J. Nanosci. Nanotechnol. 2013, 13, 2640. https://doi.org/10.1166/jnn.2013.7421
  18. Jeon, M. J.; Jeon, J. K.; Suh, D. J.; Park, S. H.; Sa, Y. J.; Joo, S. H.; Park, Y. K. Catal. Today 2013, 204, 170. https://doi.org/10.1016/j.cattod.2012.07.039
  19. Lin, T.; Goos, E.; Riedel U. Fuel Process. Technol., http://dx.doi.org /10.1016/j.fuproc.2013.03.048.
  20. Alonso, D. M.; Wettstei, S. G.; Dumesic, J. A. Chem. Soc. Rev. 2012, 41, 8075. https://doi.org/10.1039/c2cs35188a
  21. Kang, H. K.; Yu, M. J.; Park, S. H.; Jeon, J. K.; Kim, S. H.; Park, Y. K. Polymer-Korea 2013, 37, 379. https://doi.org/10.7317/pk.2013.37.3.379
  22. Park, J. H.; Heo, H. S.; Park, Y. K.; Jeong, K. E.; Chae, H. J.; Sohn, J. M.; Jeon, J. K.; Kim, S. S. Korean J. Chem. Eng. 2010, 27, 1768. https://doi.org/10.1007/s11814-010-0282-8
  23. Najafabadi, A. T.; Fatemi, S.; Sohrabi, M.; Salmasi, M. J. Ind. Eng. Chem. 2012, 25, 29.
  24. www.iza-structure.org/database
  25. Lu, Q.; Xiong, W. M.; Li, W. Z.; Guo, Q. X.; Zhu, X. F. Bioresour. Technol. 2009, 100, 4871. https://doi.org/10.1016/j.biortech.2009.04.068
  26. Torri, C.; Lesci, I. G.; Fabbri, D. J. Anal. Appl. Pyrolysis 2009, 85, 192. https://doi.org/10.1016/j.jaap.2008.11.024
  27. Kim, S. S.; Lee, H. W.; Ryoo, R.; Kim, W.; Park, S. H.; Jeon, J. K.; Park, Y. K. J. Nanosci. Nanotechnol. doi:10.1166/ jnn.2013.8545.
  28. Lu, Q.; Yang, X. C.; Dong, C. Q.; Zhang, Z. F.; Zhang, X. M.; Zhu, X. F. J. Anal. Appl. Pyrolysis 2011, 92, 430. https://doi.org/10.1016/j.jaap.2011.08.006

Cited by

  1. Catalytic Upgrading of Geodae-Uksae 1 over Mesoporous MCM-48 Catalysts vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.1951
  2. In-Situ Catalytic Pyrolysis of Xylan and Dealkaline Lignin over SAPO-11 vol.60, pp.9-11, 2017, https://doi.org/10.1007/s11244-017-0769-1
  3. Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst vol.9, pp.3, 2016, https://doi.org/10.3390/en9030201
  4. Pyrolysis of the Cellulose Fraction of Biomass in the Presence of Solid Acid Catalysts: An Operando Spectroscopy and Theoretical Investigation pp.18645631, 2018, https://doi.org/10.1002/cssc.201802073
  5. Fast pyrolysis of waste pepper stem over waste FCC catalyst vol.44, pp.6, 2018, https://doi.org/10.1007/s11164-018-3381-5