DOI QR코드

DOI QR Code

Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

  • Ma, De-Yun (School of Chemistry and Chemical Engineering, Zhaoqing University) ;
  • Guo, Hai-Fu (School of Chemistry and Chemical Engineering, Zhaoqing University) ;
  • Qin, Liang (School of Chemistry and Chemical Engineering, Zhaoqing University) ;
  • Xu, Jun (College of Medicine, Jinan University)
  • Received : 2013.05.04
  • Accepted : 2013.06.27
  • Published : 2013.09.20

Abstract

Two new isostructural dinuclear complexes, $Ln_2(4-cpa)_6(bpy)_2$ (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenylacetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with $Ln{\cdots}Ln$ separations of 3.967(2) and 3.956(3) ${\AA}$, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

Keywords

References

  1. Lin, S.; Feuerstein, R. J.; Mickelson, A. J. Appl. Phys. 1996, 79, 2868. https://doi.org/10.1063/1.361282
  2. Tsukube, H.; Juanes, S. Chem. Rev. 2002, 102, 2389. https://doi.org/10.1021/cr010450p
  3. Ma, D.; Wang, W.; Li, Y.; Li, J.; Daiguebonne, C.; Calvez, G.; Guillou, O. CrystEngComm 2010, 12, 4372. https://doi.org/10.1039/c0ce00135j
  4. de Lill, D. T.; De Bettencourt-Dias, A.; Cahill, C. L. Inorg. Chem. 2007, 46, 3960. https://doi.org/10.1021/ic062019u
  5. Marques, N.; Sella, A.; Takats, J. Chem. Rev. 2002, 102, 2137. https://doi.org/10.1021/cr010327y
  6. Liang, Y. C.; Cao, R.; Su, W. P.; Hong, M. C.; Zhang, W. J. Angew. Chem., Int. Ed. 2000, 39, 3304. https://doi.org/10.1002/1521-3773(20000915)39:18<3304::AID-ANIE3304>3.0.CO;2-H
  7. Mortl, K. P.; Sutter, J. P.; Golhen, S.; Ouahab, L.; Kahn, O. Inorg. Chem. 2000, 39, 1626. https://doi.org/10.1021/ic9911825
  8. Ma, D. Y.; Guo, H. F.; Qin, L.; Pan, Y.; Lu, K.; Liu, J. Q. J. Coord. Chem. 2012, 65, 3424. https://doi.org/10.1080/00958972.2012.718337
  9. Shah, B. K.; Neckers, D. C.; Shi, J.; Forsythe, E. W.; Morton, D. Chem. Mater. 2006, 18, 603. https://doi.org/10.1021/cm052188x
  10. Saleesh Kumar, N. S.; Varghese, S.; Rath, N. P.; Das, S. J. Phys. Chem. 2008, C112, 8429.
  11. Eliseeva, S. V.; Kotova, O. V.; Gumy, F.; Semenov, S. N.; Kessler, V. G.; Lepnev, L. S.; Bunzli, J. C. G.; Kuzmina, N. P. J. Phys. Chem. 2008, A112, 3614.
  12. Mu, L. Y. Research Method of Plant Chemical Protection; China Agriculture Press: Beijing, China, 1994; p 90.
  13. Wang, B. L.; Duggleby, R. G.; Li, Z. M.; Wang, J. G.; Li, Y. H.; Wang, S. H.; Song, H. B. Pest Manag. Sci. 2005, 61, 407. https://doi.org/10.1002/ps.972
  14. Bruker, APEXII Software (Version 6.3.1), Bruker AXS Inc., Madison, WI, USA, 2004.
  15. Parkin, S.; Moezzi, B.; Hope, H. J. Appl. Crystallogr. 1995, 28, 53. https://doi.org/10.1107/S0021889894009428
  16. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
  17. Barja, B.; Aramendia, P.; Baggio, R.; Garland, M. T.; Pena, O.; Perec, M. Inorg. Chim. Acta 2003, 355, 183. https://doi.org/10.1016/S0020-1693(03)00250-0
  18. Fu, A. Y.; Wu, Y. P.; Wang, F. M.; Sun, Y. L. J. Coord. Chem. 2010, 63, 3724. https://doi.org/10.1080/00958972.2010.521551
  19. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley, New York, 1986.
  20. de Bettencourt Dias, A.; Viswanathan, S. Chem. Commun. 2004, 1024.
  21. Bunzli, J. C. G. In: Bunzli, J. C. G., Choppin, G. R., Eds.; Lanthanide Probes in Life, Chemical and Earth Sciences, Theory and Practice; Elsevier Scientific Publishers: Amsterdam, The Netherlands, 1989; Chapter 7.
  22. Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. J. Am. Chem. Soc. 2004, 126, 15394. https://doi.org/10.1021/ja047141b
  23. Xiao, M.; Selvin, P. R. J. Am. Chem. Soc. 2001, 123, 7067. https://doi.org/10.1021/ja0031669
  24. Biju, S.; Reddy, M. L. P.; Cowley, A. H.; Vasudevan, K. V. J. Mater. Chem. 2009, 12, 5179.
  25. De Mello, C.; Wittmann, H. F.; Friend, R. H. Adv. Mater. 1997, 9, 230. https://doi.org/10.1002/adma.19970090308
  26. Gianfagna, T. J.; Natural and Synthetic Growth Regulators and their use in Horticultural and Agronomic Crops, in Hormones. Physiology, Biochemistry and Molecular Biology; Davies, P. J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp 751-773.
  27. Krikorian A. D.; Kelly, K.; Smith, D. L. Hormones in Tissue Culture and Micropropagation, in Plant Hormones and their Role in Plant Growth and Development; Davies, P. J., Nijhoff, M., Eds.; Dordrecht, The Netherlands, 1987; pp 593-613.
  28. Sterling, T. M.; Hall, J. C. Mechanism of Action of Natural Auxins and the Auxinic Herbicides, in Herbicide Activity: Toxicology, Biochemistry and Molecular Biology; Roe, R. M., Burton, J. D., Kuhr, R. J., Eds.; IOS Press: Amsterdam, The Netherlands, 1997; pp 111-141.
  29. Grossmann, K. J. Plant Growth Regul. 2003, 22, 109. https://doi.org/10.1007/s00344-003-0020-0
  30. Grossmann, K. Pest Manag. Sci. 2010, 66, 112.
  31. Offiong, O. E.; Nfor, E.; Ayi, A. A.; Martelli, S. Transition Met. Chem. 2000, 25, 369. https://doi.org/10.1023/A:1007055304150

Cited by

  1. The formation of heterometallic molecular architectures with 3d-metal atoms linked by carboxylate bridges with alkali and alkaline-earth metal ions or with lanthanides vol.42, pp.10, 2016, https://doi.org/10.1134/S1070328416100031