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Protein kinases (PKs) are an important source of drug targets, especially in oncology. With 500 or more kinases

in the human genome and only few kinase inhibitors approved, kinase inhibitor discovery is becoming more

and more valuable. Because the discovery of kinase inhibitors with an increased selectivity is an important

therapeutic concept, many researchers have been trying to address this issue with various methodologies.

Although many attempts to predict the activity and selectivity of kinase inhibitors have been made, the issue of

selectivity has not yet been resolved. Here, we studied kinase selectivity by generating predictive models and

analyzing their descriptors by using kinase-profiling data. The 5-fold cross-validation accuracies for the 51

models were between 72.4% and 93.7% and the ROC values for all the 51 models were over 0.7. The

phylogenetic tree based on the descriptor distance is quite different from that generated on the basis of sequence

alignment. 
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Introduction

Protein kinases (PKs) are a family of enzymes that transfer

a phosphate group to a substrate protein. A total of 518

kinases have been identified in the human genome. They

consist of about 1.7% of all human genes, and the set of

protein kinases is called kinome, a term that was coined by

Gerard Manning and colleagues in 2002.1 With the advan-

cements in genomics, the systematical and evolutional

analysis of the kinome was attempted. Representatively, the

518 human PKs and the evolution of PKs throughout

eukaryotes were analyzed.1,2

Many kinases are common players in the cellular signaling

and are involved in cellular processes such as cell differ-

entiation, proliferation, and apoptosis. Since kinases re-

present a major control point of cell behavior, they have

been implicated not only in oncological, but also in a

number of non-oncological conditions, including central

nervous system disorders,3,4 autoimmune diseases,5 osteo-

porosis,6 and metabolic disorders.7 Because of its biological

importance, the kinase family has also been the target of

drug discovery efforts. Although many kinase inhibitors

have been developed, only 22 small molecules (including 3

indirect mTOR inhibitors) have been approved by the FDA.

A reason for the low approval rate of kinase inhibitors is that

their cross-reactivity with unintended targets can cause

undesired side effects. Since the structural variation in the

kinase family is very low and the catalytic domains of many

kinases are highly conserved, many kinase inhibitors share

the problem of broad selectivity.

Recent advances in high throughput techniques have

facilitated large-scale bioactivity profiling experiments that

are useful in not only predicting the compound activity

against various types of kinases but also in providing infor-

mation on kinase selectivity. However, the systematic screen-

ing of large numbers of compounds against a large number

of kinases is a difficult, expensive, and time-consuming

process. Therefore, computational kinase profiling is a pro-

mising approach in the effort to discover novel kinase

inhibitors.

Previously, many researchers and companies have used

computational kinase profiling.8-10 This strategy is routinely

applied to predict the kinase enzymatic and cellular activity.

However, those studies have focused on activity prediction

and have a limited ability to predict the selectivity of a

kinase inhibitor.

To date, studies examining kinase inhibitor selectivity

have been carried out using chemogenomic approaches.11-17

Because these approaches depend on the variation of speci-

fic kinase sequences, they were limited to the elucidation of

the kinase inhibitor selectivity for weak inhibitor-sequence

relation.

Here, we studied the inhibition profiling data for 51

kinases to predict the kinase inhibitory activity of the

corresponding inhibitors and to understand their selectivity

using a ligand-related descriptor-based approach. Our ap-

proach enables a kinomic view of kinase inhibitor selec-

tivity. 
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Methods

Dataset. In order to generate the dataset, we extracted the

kinase bioactivity data from the Kinase SARfari database

(https://www.ebi.ac.uk/chembl/sarfari/kinasesarfari), which

is the largest public database for protein kinases.18 This data-

base provides curated data sets comprising the ChEMBL

SAR data derived from published literature. The data set

used in this study contains 51 human kinase domains that

have over 100 compounds for which the IC50 values are

available. For our study, we divided the kinaseinhibitor pairs

into 2 classes (active and inactive) on the basis of the IC50

value. The class with IC50 value smaller than 10 µM was

defined as active, while the class with IC50 value higher than

10 µM was defined as inactive. 

Then, 1058 2D molecular descriptors for each compound

were calculated using the preADMET program.19 The

number of molecular descriptors was filtered based on their

deviation and correlation. Finally, the molecular descriptors

were ranked by their signal-to-noise ratio. The signal-to-

noise ratio is defined as:

Signal to noise ratio = 

In the above equation, AVG (class) means the average of

descriptor value on each class, STD (class) means standard

deviation of each class.

Model Building. Support vector machine (SVM) is a

statistical method for classification, wherein the samples are

projected into a feature space and a hyperplane is con-

structed in that space. The decision function can be used to

make predictions for test samples. Both the training and test

samples can be efficiently projected into the feature space

via kernel functions. 

The E1071 package of the R program (http://cran.r-project.

org/web/packages/e1071/) was used to build the kinase

models for radial basis SVM. The gamma, cost, and the

number of descriptors were optimized by a 5-fold cross

validation. The performance of a 5-fold cross validation was

measured by accuracy = (TP + TN)/(TP + TN+ FP + FN),

where TP, TN, FP, and FN denote the number of true

positives, true negatives, false positives, and false negatives,

respectively. To reliably estimate the performance, receiver

operating characteristic curve (ROC) analysis was perform-

ed. In this analysis, the area under the ROC curve (AUC)

corresponding to random classification is 0.5, while that at

an optimal state is 1. 

Construction of Descriptor-Based Phylogenetic Tree

for 51 Kinase Models. To compare the 51 kinase models,

the descriptor similarity matrix was generated. In this matrix,

each descriptor was encoded by Boolean values according to

the usage of each kinase model. To generate the distance

matrix for the 51 kinase models, the distance between each

kinase model was measured using the Tanimoto distance.

Using this distance matrix, a hierarchical clustering by the

Ward method was performed to generate the phylogenetic

tree. The sequence similarity matrix was generated using

aligned sequence in Kinase SARfari database. The Figtree

program (http://tree.bio.ed.ac.uk/software/figtree/) was used

to draw the phylogenetic tree. 

Results and Discussion

To understand the kinase selectivity that represents the

major hurdle in kinase drug discovery studies, we tried to

profile the kinase inhibitory activity. In order to profile the

kinase inhibitor activity, we constructed protein kinase

inhibitor classification models based on SVM. The sche-

matic diagram of our method is shown in Figure 1. As a first

step, we chose 51 human protein kinases from the dataset

obtained from ChEMBL kinase SARfari and constructed

classification models for them using the SVM method with

an IC50 cutoff of 10 mM. The 5-fold cross-validation method

was used to validate our models. As shown in Figure 2 and

Table 1, the 5-fold cross-validation accuracies for the 51

models were between 72.4% and 93.7% and the ROC values

for all the 51 models were over 0.7. These measures indicate

the robustness of the constructed kinase models.

To predict the selectivity of the kinase inhibitors in our

model, we analyzed the distribution of the descriptors for all
AVG Active( ) AVG Inactive( )–

STD Active( ) STD Inactive( )+
---------------------------------------------------------------------------

Figure 1. Schematic diagram of the descriptor-based profile analysis.

Figure 2. The bioactivity data-derived ROC values for the 51
kinase models. 
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the kinase models. A total of 466 descriptors were used to

generate the models and 40 highly correlated descriptors

were collected for each model. As shown in Figure 3, the

maximum number of kinase models that was described by at

least one descriptor was 13, and 146 descriptors were uni-

quely explained by a single kinase model. Only 10 descriptors

were repeated in over 10 kinase models and three quarters of

the descriptors were repeated in fewer than 3 models. These

results indicate that the descriptors that were used to

generate the kinase models could clearly elucidate the kinase

selectivity. 

We analyzed the distribution of the 146 descriptors that

were not repeated in any kinase models (Figure 4). For

example, while the 13 descriptors of the MEK1 model have

no redundancies in other kinase models, the descriptors of

several other kinases (e.g., ABL1, an isoform of p38 and

protein kinase C (PKC), and an isoform of protein kinase D

(PKD)) are repeated in other models more than once. This

indicates that these kinases may be expected to be less

selective than the others in our model. 

To prove the results of our analysis, we tried to perform a

classification of the kinases using 2 principles: 1) a classifi-

Table 1. Performance of the 51 kinase models based on a 5-fold
cross-validation

Kinase
No. of 

IC50 

No. of 

Descriptors
Accuracy ROC

hABL1 350 30 0.871 0.854

hABL 135 30 0.874 0.876

hAKT1 611 20 0.882 0.859

hAURa 376 30 0.824 0.823

hBRAF 238 30 0.924 0.925

hCAMK2A 127 30 0.937 0.917

hCAMK2B 127 30 0.929 0.912

hCDK1 1664 30 0.792 0.790

hCDK2 1913 30 0.848 0.820

hCDK4 1172 30 0.85 0.844

hCDK5 667 30 0.843 0.842

hChk1 931 30 0.843 0.762

hCSNK2A1 156 30 0.885 0.834

hEGFR 2414 30 0.85 0.831

hFGFR1 716 30 0.832 0.832

hFLT3 266 40 0.82 0.807

hGSK3a 436 30 0.856 0.859

hGSK3b 786 30 0.837 0.829

hHER2 818 40 0.856 0.852

hIGF1R 557 30 0.86 0.847

hIKBKB 323 20 0.817 0.733

hINSR 221 30 0.792 0.756

HJNK1 342 30 0.769 0.771

hJNK2 212 30 0.849 0.865

hJNK3 197 30 0.898 0.899

hMEK1 327 40 0.801 0.766

hMET 259 20 0.826 0.790

hMK2 317 20 0.836 0.836

hp38a 1685 30 0.896 0.820

hp38b 351 30 0.815 0.812

hp38d 307 20 0.879 0.873

hp38g 310 30 0.881 0.876

hPDGFRa 420 30 0.724 0.699

hPDPK1 105 30 0.867 0.864

hPKAa 552 30 0.837 0.839

hPKCa 822 30 0.848 0.847

hPKCb1 697 30 0.864 0.861

hPKCe 555 30 0.865 0.846

hPKCg 528 30 0.886 0.879

hPKCh 449 30 0.906 0.907

hPKCt 514 30 0.893 0.892

hPKCz 450 30 0.918 0.883

hPKD1 324 30 0.932 0.919

hPKD3 320 30 0.922 0.902

hPLK1 223 20 0.924 0.905

hSRC 1683 30 0.844 0.821

hTIE2 466 30 0.843 0.819

hVEGFR1 657 30 0.796 0.790

hLCK 1215 30 0.88 0.874

hVEGFR2 2731 30 0.785 0.710

hPDGFRb 964 30 0.789 0.726

Figure 3. The distribution of the descriptor of the 51 kinase
models.

Figure 4. The distribution of the nonrepeated descriptors of the 51
kinase models.
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cation based on sequence alignment and 2) a classification

based on the descriptors. To better visualize the results, we

constructed the corresponding phylogenetic trees. In the

phylogenetic tree constructed on the basis of sequence

alignment [Figure 5(a)], the kinome family is well defined.

The general human kinome is evolutionarily divided into 7

major groups1.The AGC family contains the kinases protein

kinase A(PKA), protein kinase C (PKC), and protein kinase

G (PKG). The CaMK family contains the calcium/calmodu-

lin-dependent protein kinases. The CK1 family contains the

casein kinase 1 group. The CMGC family contains cyclin

dependent kinase (CDK), MAP kinase (MAPK), Glycogen

synthase kinase 3 (GSK3), and CDC-like kinase (CLK). The

STE family contains the homologs of yeast Sterile 7, Sterile

11, and Sterile 20 kinases. The TK family contains the

tyrosine kinases, and the TKL family contains the tyrosine

kinase-like group of kinases. Many of the 51 selected

kinases belong to the TK, CMGC, and AGC families. 

The phylogenetic tree based on the descriptor distance is

quite different from that generated on the basis of sequence

alignment. Distinct from the sequence-based tree, the

descriptor-based tree was divided into 4 kinases families, the

TK, AGC, CaMK, and CMGC families. The CMGC family

comprised p38, c-Jun kinase (JNK), and other kinases. Most

of the proteins that in the previous tree belonged to the AGC

and CaMK families are rearranged into the TK family.

According to the descriptor-based phylogenetic tree, the

similarity between the inhibitors of 2 kinases is well ex-

plained by this rearrangement. In particular, while the PKC

isoform family is included in the AGC family in the sequence-

based tree, the PKC family constructed an independent tree

in our model tree [Figure 5(b)]. This result correlates with

the analysis performed using the distribution of the de-

scriptors.

As previously mentioned, the descriptors that represented

the PKC isoform models are not unique, meaning that PKC

kinases have a lower selectivity than the other kinases. The

known PKC inhibitors have a similar structure to Stauro-

sporine, which is a well-known non-specific kinase inhibitor.

This finding indicates low kinase selectivity in the PKC

family.20

The descriptors with “BCUT highest eigenvalue 03 MPEOE

charge” and “SK atom type melting point” are highly ranked

in the descriptor distribution but they are not used for the

PKC kinase model (Table 2). Therefore, these descriptors

are presumed to be useful to predict the PKC kinase

sensitivity. As the MPEOE charge and SK atom type are a

unique parameters used in the preADMET program, these

descriptors can only be used by this program.19

In the descriptor-based tree, Aurora A kinase is rearranged

into the TK family. This is a remarkable difference from the

arrangement in the sequence-based tree. Certain well-known

inhibitors of Aurora A kinase also have inhibitory activity

against c-Src tyrosine kinase. Even though Aurora A kinase

belongs to the family of mitotic serine/threonine kinases and

it shares sequences homology with members of the AGC

family, the structure and function of its inhibitors are similar

to the inhibitors of the tyrosine kinase family.20 Our analysis

underpinned the results of previous reports. 

Therefore, we suggest that the descriptor-based profile

analysis for kinase inhibitors can provide new insights on

how to classify a kinase family based on the selectivity of its

Figure 5. A phylogenetic tree of the 51 kinases using (a) the
kinase sequence-based clustering and (b) the descriptor distance-
based clustering methods. Major differences between 2 trees are
JNK kinase (Red box), PKC family (Blue box), and Aurora A
kinase (Green box).

Table 2. Comparison of the overlapped descriptors among the 8
PKC family models and the 51 kinase models

Descriptor
8 PKC 

clusters

51 

models

AlogP98 atom type 025 C 7 13

Information Content 6 12

Valence bound charge index03 8 12

BCUT highest eigenvalue 03 MPEOE charge 2 11

Kier steric descriptor 6 11

Number of aromatic bonds 6 11

SK atom type melting point 0 11

Valence charge index_03 8 11

BCUT lowest eigenvalue 02 mass 7 10

BCUT lowest eigenvalue 03 mass 5 10



2684     Bull. Korean Chem. Soc. 2013, Vol. 34, No. 9 Hyejin Park et al.

inhibitors. Moreover, our analysis proved to be more infor-

mative than the sequence-based phylogenetic tree in the

description of the kinase selectivity.

Conclusions

In this study, we built kinase models for 51 kinases and

tried to profile the activity and selectivity of each model. For

each model, we used a descriptor-based simulation using the

SVM method and analyzed the repeated descriptors. From

this approach, we could suggest a new classification of the

kinase families and successfully described the selectivity of

JNK and PKC. Furthermore, our model can explain why the

Aurora kinase inhibitors are similar to the c-Src kinase

inhibitors. Therefore, our ligand-related descriptor-based

approach is useful for obtaining systematical information on

kinase inhibitor activity and selectivity by suggesting virtual

inhibitory profiles and can describe certain features of kinase

selectivity. Future studies using this approach could further

elucidate kinase selectivity.
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