DOI QR코드

DOI QR Code

Effects of Fruit By-product Extracts on Blood Characteristics, Antioxidant Activity, and Immune Response in Pigs

  • Park, Jun Cheol (National Institute of Animal Science, R.D.A) ;
  • Lee, Se Hun (National Institute of Animal Science, R.D.A) ;
  • Park, Sung Kwon (National Institute of Animal Science, R.D.A) ;
  • Hong, Joon Ki (National Institute of Animal Science, R.D.A) ;
  • Zhang, Zheng Fan (Department of Animal Resource & Science, Dankook University) ;
  • Cho, Jin Ho (Department of Animal Resource & Science, Dankook University) ;
  • Kim, In Ho (Department of Animal Resource & Science, Dankook University)
  • Received : 2013.05.13
  • Accepted : 2013.06.13
  • Published : 2013.08.31

Abstract

This experiment was conducted to determine the effects of extracts from fruit by-products on the blood characteristics, antioxidant activities, and immune response to Escherichia coli lipopolysaccharide (LPS) in growing pigs. A total of 96 pigs [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] with an initial BW of $27.94{\pm}0.92kg$ were used in a 6-week feeding trial. The pigs were randomly placed into one of four treatment groups with six replications (four pigs per replication) per treatment according to their initial BW. Treatments were: 1) CON (basal diet), 2) PRO (CON + 0.5% procyanidin), 3) HES (CON + 0.5% hesperetin), 4) TAN (CON + 0.5% tannin). At the end of the sixth week, five pigs (total 20 pigs, $BW=27.94{\pm}0.92kg$) were selected from each treatment and injected with LPS ($100{\mu}g/kg$ of BW). Blood samples were collected 3 h after LPS injection to assess anti-oxidative and inflammatory responses. After the LPS challenge, the concentration of serum cholesterol decreased with fruit by-product treatment compared with CON (p<0.05). The administration of TAN increased the concentration of blood total protein compared with the CON group 3 h after LPS challenge (p<0.05). The albumin concentration was also higher with PRO treatment compared to HES treatment (p<0.05). The concentration of IgM was increased by fruit by-product supplementation at 0 and 3 h (p<0.05). In addition, IgG concentration was higher in PRO, HES, and TAN treatments compared to CON treatment at 0 h, and IgG concentrations were also higher in the HES group compared to the CON group at 3 h (p<0.05). The concentration of IgA also increased with fruit by-product treatments at 3 h (p<0.05). In conclusion, dietary supplementation with fruit by-products may moderate the immune response after a LPS challenge in growing pigs.

Keywords

References

  1. Brenes, A., Viveros, A., Goni, I., Centeno, C., Sayago-Ayerdy, S. G., Arija, I. and Saura-Calixto, F. 2008. Effect of Grape Pomace Concentrate and Vitamin E on Digestibility of Polyphenols and Antioxidant Activity in Chickens. Poult. Sci. 87:307-316. https://doi.org/10.3382/ps.2007-00297
  2. Chen, S. T., Peng, S. J. and Chen, J. R. 2003. Effects of dietary protein on renal function and lipid metabolism in five-sixths nephrectomized rats. Br. J. Nutr. 89:491-497. https://doi.org/10.1079/BJN2002808
  3. Deng, W., Fang, X. and Wu, J. 1997. Flavonoids function as antioxidants: By scavenging reactive oxygen species or by chelating iron. Radiat. Phys. Chem. 50:271-276. https://doi.org/10.1016/S0969-806X(97)00037-6
  4. Frankel, E. 1995. Nutritional benefits of flavonoids. International conference on food factors: Chemistry and cancer prevention, Hamamatsu, Japan. Abstracts, C6-2.
  5. Han, J. Y., Sung, J. H., Kim, D. J., Jeong, H. S. and Lee, J. S. 2008. Inhibitory Effect of Methanol Extract and Its Fractions from Grape Seeds on Mushroom Tyrosinase. J. Korean Soc Food Sci. Nutr. 37:1679-1683. https://doi.org/10.3746/jkfn.2008.37.12.1679
  6. Hwang, D. S., Shin, S. Y., Lee, Y. G., Hyun, J. Y., Yong, Y. J., Park, J. C., Lee, Y. H. and Lim, Y. H. 2011. A compound isolated from Schisandra chinensis induces apoptosis. Bioorg. Med. Chem. Lett. 21:6054-6057. https://doi.org/10.1016/j.bmcl.2011.08.065
  7. Jayaprakasha, G. K., Tamil, S. and Sakariah, K. K. 2003. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 36:117-122. https://doi.org/10.1016/S0963-9969(02)00116-3
  8. Jeon, S. M., Bok, S. H., Jang, M. K., Lee, M. K., Nam, K. T., Park, Y. B., Rhee, S. J. and Chio, M. S. 2001. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci. 69:2855-2866. https://doi.org/10.1016/S0024-3205(01)01363-7
  9. Johnson, R. W. 1997. Inhibition ofgrowth by pro-inflammatory cytokines: an integrated view. J. Anim. Sci. 75:1244-1255. https://doi.org/10.2527/1997.7551244x
  10. Kawase, M., Motohashi, N., Satoh, K., Sakagami, H., Nakashima, H., Tani, S., Shirataki, Y., Kurihara, T., Spengler, G., Wolfard, K. and Molnar, J. 2003. Biological activity of persimmon (Diospyros kaki) peel extracts. Phytother Res. 17:495-500. https://doi.org/10.1002/ptr.1183
  11. Kim, H. K., Jeong, T. S., Lee, M. K., Park, Y. B. and Choi, M. S. 2003. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin. Chim. Acta. 327:129-137. https://doi.org/10.1016/S0009-8981(02)00344-3
  12. Larrauri, J. A., Ruperez, P., Bravo, L. and Saura-Calixto, F. 1996. High dietary fibre powdersfrom orange and lime peels: Associated polyphenols and antioxidant capacity. Food Res. Int. 29:757-762. https://doi.org/10.1016/S0963-9969(97)00003-3
  13. Lee, S. H., Jeong, T. S., Park, Y. B., Kwon, Y. K., Choi, M. S. and Bok, S. H. 1999. Hypocholesterolemic effect of hesperetin mediated by inhibition of 3-hydroxy-3-methylgultaryl coenzyme a reductase and acyl coenzyme A: Cholesterol acyltransferase in rats fed high cholesterol diet. Nutr. Res. 19:1245-1258. https://doi.org/10.1016/S0271-5317(99)00085-8
  14. Lien, T. F., Yeh, H. S. and Su, W. T. 2007. Effect of adding extracted hesperetin, naringenin and pectin on egg cholesterol, serum traits and antioxidant activity in laying hens. Arch. Ani. Nutr. 62:33-43.
  15. Lim, B. O., Seo, T. W., Shin, H. M., Park, D. K., Kim, S. U., Cho, K. H. and Kim, H. C. 2000. Effect of Betulae Plantyphtllae Cortex on free radical in diabetic rats induced by streptozotocin. Korean J. Herbology. 15:69-77.
  16. Mallavadhani, U. V., Panda, A. K. and Rao, Y. R. 1998. Pharmacology and chemotaxonomy of Diospyros. Phytochemistry. 49:901-951. https://doi.org/10.1016/S0031-9422(97)01020-0
  17. Marklund, S. and Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Marnewick, J. L., Joubert, E., Swart, P., Westhuizen, V. D. F. and Gelderblom, W. C. 2003. Modulation of hepatic drug metabolizing enzymes and oxidative status by rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), green and black (Camellia sinensis) teas in rats. J. Agric. Food Chem. 51:8113-8119. https://doi.org/10.1021/jf0344643
  19. Marnewick, J. L., Joubert, E., Joseph, S., Swanevelder, S., Swart, P. and Gelderblom, W. 2005. Inhibition of tumour promotion in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique South African herbal teas. Cancer Lett. 224:193-202. https://doi.org/10.1016/j.canlet.2004.11.014
  20. Matteri, R. L., Klir, J. J., Fink, B. N. and Johnson, R. W. 1998. Neuroendocine-immune interactions in the neonate. Domest. Anim. Endocrinol. 15:397-407. https://doi.org/10.1016/S0739-7240(98)00024-1
  21. McCord, J. M. 2000. The evolution of free radicals and oxidative stress. Am. J. Med. 108:652-659. https://doi.org/10.1016/S0002-9343(00)00412-5
  22. Miyake, Y., Minato, K., Fukumoto, S., Yamamoto, K., Oya-Ito, T., Kawakishi, S. and Osawa, T. 2003. New potent antioxidative hydroxyflavanones produced with Aspergillus saitoi from flavanone glycoside in citrus fruit. Biosci Biotechnol Biochem. 67:1443-1450. https://doi.org/10.1271/bbb.67.1443
  23. NRC. 1998. Nutrient Requirement of Pigs. 10th ed. National Research Council. Academy Press, Washington, DC.
  24. Packer, L., Rimbach, G. and Virgili, F. 1999. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (pinus maritima) bark, pycnogenol. Free Radiac Biol. Med. 27:704-724. https://doi.org/10.1016/S0891-5849(99)00090-8
  25. Pendino, K. J., Laskin, J. D., Shuler, R. L., Punjabi, C. J. and Laskin, D. L. 1993. Enhanced production of nitric oxide by rat alveolar macrophages after inhalation of a pulmonary irritant is associated with increased expression of nitric oxide synthase. J. Immunol. 151:7196-7205.
  26. Rice-Evans, C. A., Miller, N. J. and Pananga, G. 1996. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol. Med. 20:933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  27. SAS Institute, 2008. SAS user's guide, Statistical Analysis System Inst. Inc Cary NC.
  28. Staedler, J., Schmalix, W. A. and Doehmer, J. 1995. Inhibition of biotransformation by nitric oxide (NO) overproduction and toxic consequences. Toxicol. Lett. 82:215-219.
  29. Terra, X., Valls, J., Vitrac, X., Merrillon, J. M., Arola, L., Ardevol, A., Blade, C., Fernandez-Larrea, J., Pujadas, G., Salvado, J. and Blay, M. 2007. Grape-seed procyanidins act as anti-inflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J. Agric. Food Chem. 55:4357-4365. https://doi.org/10.1021/jf0633185
  30. Tourino, S., Selga, A., Jimenez, A., Julia, L., Lozano, C., Lizarraga, D., Cascante, M. and Torres, J. L. 2005. Procyanidin Fractions from Pine (Pinus pinaster) Bark: Radical Scavenging Power in Solution, Antioxidant Activity in Emulsion, and Antiproliferative Effect in Melanoma Cells. J. Agric. Food Chem. 53:4728-4735. https://doi.org/10.1021/jf050262q
  31. Vigna, G. B., Costantini, F., Aldini, G., Carini, M., Catapano, A., Schena, F., Tangerini, A., Zanca, R., Bombardelli, E., Morazzoni, P., Mezzetti, A., Fellin, R. and Facino, R. M. 2003. Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism. 52:1250-1257. https://doi.org/10.1016/S0026-0495(03)00192-6
  32. Virgili, F., Kobuchi, H. and Packer, L. 1998. Procyanidins extracted from pinus maritima (Pycnogenol$^{(R)}$): Scavengers of free radical species and modulators of nitrogen monoxide metabolism in activated murine RAW 264.7 Macrophages. Free Radi. Biol. Med. 24:1120-1129. https://doi.org/10.1016/S0891-5849(97)00430-9
  33. Warren, J. B. 1994. Nitric oxide and human skin blood flow response to acetylcholine and ultraviolet light. FASEB J. 8:247-251. https://doi.org/10.1096/fasebj.8.2.7509761
  34. Webel, D. M., Finck, B. N., Baker, D. H. and Johnson, R. W. 1997. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J. Anim. Sci. 75:1514-1520. https://doi.org/10.2527/1997.7561514x
  35. Wilson, H. K., Price-Jones, C. and Hughes, R. E. 1976. The influence of an extract of orange peel on the growth and ascorbic acid metabolism of young guinea-pigs. J. Sci. Food Agric. 27:661-666. https://doi.org/10.1002/jsfa.2740270712
  36. Wright, K. J., Balaji, R., Hill, C. M., Dritz, S. S., Knoppel, E. L. and Minton, J. E. 2000. Intergrated adrenal, somatotropic, and immune response of growing pigs to treatment with lipopolysaccharide. J. Anim. Sci. 80:2619-2682.
  37. Zhishen, J., Tang, M. C. and Wu, J. M. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Cited by

  1. lipopolysaccharide vol.9, pp.6, 2018, https://doi.org/10.1039/C7FO01980G