DOI QR코드

DOI QR Code

Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip

  • Kang, Kwon (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Seo, Dong-Won (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Lee, Jae-Bong (Department of Animal Science, Gyeongsang National University) ;
  • Jung, Eun-Ji (Department of Animal Science, Gyeongsang National University) ;
  • Park, Hee-Bok (Department of Animal Science, Gyeongsang National University) ;
  • Cho, In-Cheol (National Institute of Animal Science, Rural Development Administration) ;
  • Lim, Hyun-Tae (Department of Animal Science, Gyeongsang National University) ;
  • Lee, Jun Heon (Department of Animal Science and Biotechnology, Chungnam National University)
  • Received : 2013.07.24
  • Accepted : 2013.08.21
  • Published : 2013.08.31

Abstract

Carcass weight (CW) is one of the most important economic traits in pigs, directly affecting the income of farmers. In this study, a genome wide association study was performed to detect significant single nucleotide polymorphisms (SNPs) affecting CW in pigs derived from a $F_2$ intercross between Landrace and Korean native pig (KNP). Using high-density porcine SNP chips, highly significant SNPs were identified on SSC12. Two candidate genes, LOC100523510 and LOC100621652, were subsequently selected within this region and further investigated. Within these candidate genes, five SNPs were identified and genotyped using the VeraCode GoldenGate assay. The results revealed that one SNP in the LOC100621652 gene and four SNPs in the LOC100523510 gene are highly associated with CW. These SNP markers can thus have significant applications for improving CW in KNP. However, the functions of these candidate genes are not fully understood and require further study.

Keywords

References

  1. Aulchenko, Y. S., de Koning, D. J. and Haley, C. 2007. Genome-wide rapid association using mixed model and regression: a fast and simple method for genome-wide pedigree-based quantitative trait loci association analysis. Genetics 177, 577-585. https://doi.org/10.1534/genetics.107.075614
  2. Balding, D. J. 2006. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 7:781-791. https://doi.org/10.1038/nrg1916
  3. Cho, I. C., Park, H. B., Yoo, C. K., Lee, J. G., Lim, H. T., Lee, J. B., Jung, E. J., Ko, M. S., Lee, J. H. and Jeon, J. T. 2011. QTL analysis of white blood cell, platelet and red blood cell-related traits in an $F_2$ intercross between Landrace and Korean native pigs. Anim. Genet. 42: 621-626. https://doi.org/10.1111/j.1365-2052.2011.02204.x
  4. Cho, S. H., Park, B. Y., Kim, J. H., Kim, M. J., Seong, P. N., Kim, Y. J., Kim, D. H. and Ahn, C. N. 2007. Carcass yields and meat quality by line weight of Korean native black pigs. Korean J. Anim. Sci. & Technol. 49(4):523-530. https://doi.org/10.5187/JAST.2007.49.4.523
  5. Cho, Y. M., Yoon, H. B., Lee, Y. C., Seo, K. S., Kim, S. D. and Park, Y. I. 2001. A study on growth characteristics of Korean native pig (KNP) and Landrace using individual growth curve parameters. J. Anim. Sci. & Technol. 43(6):817-822.
  6. Ernst, C. W. and Steibel, J. P. 2013. Molecular advances in QTL discovery and application in pig breeding. Trends Genet. 29(4):215-224. https://doi.org/10.1016/j.tig.2013.02.002
  7. Geldermann, H., Cepica, S., Stratil, A., Bartenschlager, H. and Preuss, S. 2010. Genome-wide mapping of quantitative trait loci for fatness, fat cell characteristics and fat metabolism in three porcine F2 crosses. Genet. Sel. Evol. 42:31. https://doi.org/10.1186/1297-9686-42-31
  8. Jeon, J. T., Park, E. W., Jeon, H. J., Kim, T. H., Lee, K. T. and Cheong, I. C. 2003. A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Mol. Cells. 16(1):113-116.
  9. Jin, S. K., Kim, C. W., Song, Y. M., Jang, W. H., Kim, Y. B., Yeo, J. S., Kim, J. W. and Kang, K. H. 2001. Physicochemical characteristics of longissimus muscle between the Korean native pig and Landrace. Korean J. Food Sci. Ani. Resour. 21(2):142-148.
  10. Kim, E. H., Choi, B. H., Kim, K. S., Lee, C. K., Cho, B. W., Kim, T. -H. and Kim, J. J. 2007. Detection of mendelian and parent-of-origin quantitative trait loci in a cross between Korean native pig and Landrace. I. Growth and body composition traits. Asian-Aust. J. Anim. Sci. 20(5):669-676. https://doi.org/10.5713/ajas.2007.669
  11. Kim, S. W., Li, X. P., Lee, Y. M., Choi, Y. I., Cho, B. W., Choi, B. H., Kim, T. H., Kim, J. J. and Kim, K. S. 2011. QTL scan for meat quality traits using high-density SNP chip analysis in cross between Korean native pig and Yorkshire. Asian-Aust. J. Anim. Sci. 24:1184-1191. https://doi.org/10.5713/ajas.2011.11031
  12. Kim, T. H., Choi, B. H., Yoon, D., Park, E. W., Jeon, J. T., Han, J. Y., Oh, S. J. and Cheong, I. C. 2005. Identification of quantitative trait loci (QTL) affecting teat number in pigs. Asian-Aust. J. Anim. Sci. 17:1210-1213.
  13. Kwon, O. S. 2006. Preservation background and environmental status of Korean native black pigs. Symposium proceedings of preservation and utilization of Korean native black pigs. pp. 3-20.
  14. Lee, H. K., Lee, S. S., Kim, T. H., Jeon, G. J., Jung, H. W., Shin, Y. S., Han, J. Y., Choi, B. H. and Cheong I. C. 2003. Detection of imprinted quantitative trait loci (QTL) for growth traits in pigs. Asian-Aust. J. Anim. Sci. 16:1087-1092. https://doi.org/10.5713/ajas.2003.1087
  15. Ma, J., Ren, J., Guo, Y., Duan, Y., Ding, N., Zhou, L., Li, L., Yan, X., Yang, K., Huang, L., Song, Y., Xie, J., Milan, D. and Huang, L. 2009. Genome-wide identification of quantitative trait loci for carcass composition and meat quality in a large-scale White Duroc X Chinese Erhualian resource population. Anim. Genet. 40(5):637-647. https://doi.org/10.1111/j.1365-2052.2009.01892.x
  16. Miller, M. C., Sood, A., Spielvogel, B. F. and Hall, I. H. 1998. The synthesis and antitumor activity of the sodium salt and copper (II) complex of N-[(trimethylamineboryl)-carbonyl]-L-phenylalanine methyl ester. Met. Based Drugs. 5:1-9. https://doi.org/10.1155/MBD.1998.1
  17. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J. and Sham, P. C. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575. https://doi.org/10.1086/519795
  18. Thomsen, H., Lee, H. K., Rothschild, M. F., Malek, M. and Dekkers, J. C. 2004. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J. Anim. Sci. 82(8):2213-2218. https://doi.org/10.2527/2004.8282213x
  19. Yoo, C. K., Lim, H. T., Han, S. H., Lee, S. S., Ko, M. S., Kang, T., Lee, J. H., Park, H. B. and Cho, I. C. 2012. QTL analysis of back fat thickness and carcass pH in an $F_2$ intercross between Landrace and Korean native pigs. Mol. Biol. Rep. 39:8327-8333. https://doi.org/10.1007/s11033-012-1682-0