DOI QR코드

DOI QR Code

A Detection Method of Interference from WiFi Network in IEEE 802.15.4 Network

IEEE 802.15.4 네트워크에서 WiFi 네트워크의 간섭 탐지 방법

  • Received : 2013.05.30
  • Accepted : 2013.07.05
  • Published : 2013.08.31

Abstract

IEEE 802.15.4 network and WiFi network are installed to overlap each other and configured to use adjacent frequency bands in which case the communication service required by applications can not be guaranteed because of randomly increased frame transmission delay and frequent frame transmission failures at nodes in IEEE 802.15.4 network. In this paper, transmission delay model at IEEE 802.15.4 nodes and an experimental system to evaluate the interference from WiFi traffic are described, then elements for the evaluation of interference are measured with the analysis of their characteristics. A sequential method of using medium access layer and physical layer elements of IEEE 802.15.4 protocols is proposed to decide interference from WiFi network. With the proposed method, if an evaluation function having frame transmission failures and transmission delay as variables returns a value greater than a threshold, intensive measurements of wireless channel power are carried out subsequently and the final decision of interference is made by the calculated average channel power. Experimental results of the method show that the decision time is reduced with increased frequency of decision in comparison to an other similar method.

IEEE 802.15.4 네트워크와 WiFi 네트워크가 서로 중첩되게 설치되고 인접한 주파수 대역을 사용하도록 설정된 경우 IEEE 802.15.4 네트워크의 노드들에서 프레임전송지연이 불규칙하게 커지고 프레임 전송이 자주 실패하므로 응용에서 요구되는 전송서비스 품질을 보장할 수 없다. 이 논문에서는 WiFi 트래픽으로 인한 간섭현상을 평가하기 위해 IEEE 802.15.4 네트워크 노드의 전송지연모델과 실험시스템을 설명한 후 간섭평가요소들을 측정하고 그 특성에 대해서 분석하였다. WiFi 네트워크로부터의 간섭을 판정하기 위해 IEEE 802.15.4 매체접근제어계층과 물리계층 프로토콜 요소를 순차적으로 사용하는 방법이 제안되었다. 제안된 방법은 송신기에서 프레임의 전송실패와 전송지연을 변수로 하는 평가함수가 기준치를 넘는 경우 무선채널의 전력을 집중적으로 측정하여 계산된 평균채널전력으로 간섭을 최종적으로 판정하는 방식이다. 이 방식에 대한 실험결과는 다른 유사한 방식에 비해 간섭에 대한 판정시간은 줄어들고, 판정빈도는 증가함을 보인다.

Keywords

References

  1. K. Shuaib, M. Alnuaimi, M. Boulmalf, I. Jawhar, F. Sallabi, and A. Lakas, "Performance Evaluation of IEEE 802.15.4 : Experimental and Simulation Results", Journal of Communications, vol. 2, no. 4, pp. 29-37, Jun 2007.
  2. G. M. Tamilselvan and A. Shanmugam, "Probability Analysis of channel collision between IEEE 802.15.4 and IEEE 802.11b using Qualnet Simulation for various Topologies", International Journal of Computer Theory and Engineering, vol. 1, no. 1, pp. 59-64, 2009.
  3. D. G. Yoon, S. Y. Shin, W. H. Kwon, and H. S. Park, "Packet Error Rate Analysis of IEEE 802.15.4 under IEEE 802.11b Interference", Proc. VTC, pp. 1186-1190, 2006.
  4. ZigBee Alliance, "ZigBee and Wireless Frequency Coexistence", ZigBee White Paper, Jun. 2007.
  5. LAN MAN Standards Committee of the IEEE Computer Society, Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, ANSI/IEEE Std 802.11, 1999 Edition, 1999.
  6. LAN MAN Standards Committee of the IEEE Computer Society, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs), IEEE Std 802.15.4-2006, Sep. 8, 2006.
  7. ZigBee Standards Organization, ZigBee Specification, Document 053474r13, Dec. 1, 2006.
  8. S. M. Kim, J. W. Cho, C. Y. Jung, T. H. Jeon, J. H. Park, Y. J. Kang, S. H. Jeong, M. J. Kim, and D. K. Sung, "Experiments on Interference and Coexistence between Zigbee and WLAN Devices Operating in the 2.4 GHz ISM Band", Proc. NGPC, pp. 15-19, Nov. 2005.
  9. M. U. Memon, L. X. Zhang, and B. Shaikh, "Packet Loss Ratio Evaluation of the Impact of Interference on ZigBee Network caused by Wi-Fi (IEEE 802.11b/g) in E-health Environment", IEEE 14th International Conference on eHealth Networking, Applications and Service (Healthcom), pp. 462-465, 2012.
  10. M. S. Kang, J.W. Chong, H. Hyun, S.M. Kim, B.H. Jung, and D.K. Sung, "Adaptive Interference-Aware Multi-Channel Clustering Algorithm in a Zigbee Network in the Presence of WLAN Interference," Int. Symposium on Wireless Pervasive Computing 2007, Feb. 2007.
  11. C. A. Boano, T. Voigt, A. Dunkels, F. Osterland, N. Tsiftes, L. Mottola, and P. Suarez, "Exploring the LQI Variance for Rapid Channel Quality Assessment", Proc. of the 8th Int. Conf. on Information Processing in Sensor Networks (IPSN), pp. 369-370, Apr. 2009.
  12. C. A. Boano, M. A. Zuniga, T. Voigt, A. Willig, and K. Romer, "The Triangle Metric : Fast Link Quality Estimation for Mobile Wireless Sensor Networks", Proc. of 19th Int. Conference on Computer Communications and Networks (ICCCN), pp. 1-7, Aug. 2010.
  13. C. Gomez, A. Boix, and J. Paradells, "Impact of LQI-Based Routing Metrics on the Performance of a One-to-One Routing Portocol for IEEE 802.15.4 Multihop Networks", EURASIP Journal on Wireless Communications and Networking, 2010.
  14. Z. Jindong, S. Wu, C. Mu. B. Fan, and Y. Lu, "Study and Prediction of Wireless Link Quality for Adaptive Channel Hopping", Journal of Networks, vol. 7, no. 11, pp. 1884-1891, Nov. 2012.
  15. R. Musaloiu-E and A. Terzis, "Minimising the Effect of WiFi Interference in 802.15.4 Wireless Sensor Networks", Int. Journal of Sensor Networks, vol. 3, no. 1, 2008.
  16. K. Srinivasan and P. Levis, "RSSI is Under Appreciated", Proc. of the 3rd Workshop on Embedded Networked Sensors (EmNets), May 2006.
  17. C. Won, J. H. Youn, H Ali, H Sharif, and J. Deogun, "Adaptive Radio Channel Allocation for Supporting Coexistence of 802.15.4 and 802.11b", Proc. VTC, vol. 4, pp. 2522-2526, Sep. 2005.
  18. P. Yi, A. Iwayemi, and C. Zhou, "Developing ZigBeee Deployment Guideline Under WiFi Interference for Smart Grid Applications", IEEE Trans. on Smart Grid, vol. 2, no. 1, pp. 110-120, Mar. 2011. https://doi.org/10.1109/TSG.2010.2091655
  19. Texas Instrument, CC253x System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Applications : User's Guide, 2012.

Cited by

  1. Frame Transmission and Channel Changing Methods of IEEE 802.15.4 Nodes in WiFi Traffic Interference Environment vol.15, pp.1, 2014, https://doi.org/10.7472/jksii.2014.15.1.179
  2. Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks vol.15, pp.2, 2014, https://doi.org/10.7472/jksii.2014.15.2.09
  3. An Improved Method of Avoiding RF Congestion in Indoor Environments vol.154, pp.None, 2016, https://doi.org/10.1016/j.proeng.2016.07.455