
Honam Mathematical J. 35 (2013), No. 3, pp. 395–406
http://dx.doi.org/10.5831/HMJ.2013.35.3.395

CLASSIFICATION OF GENERALIZED PAPER

FOLDING SEQUENCES

Junghee Yun, Junhwi Lim, and Nahmwoo Hahm∗

Abstract. Generalized paper folding sequences Xn
p and (XpYq)n

where X,Y ∈ {R,L,U,D}, and n, p, q ∈ N with p, q ≥ 2 are clas-
sified in this paper. We show that all generalized paper folding
sequences Xn

p are classified into one type if we classify generalized
paper folding sequences along with the numbers of downwards and
upwards. In addition, we investigate the numbers of downwards
and upwards in (XpYq)n and prove that all generalized paper fold-
ing sequences (XpYq)n are classified into two types.

1. Introduction and Preliminaries

Recently, paper folding sequences have been investigated extensively
by many researchers[1-8]. Davis and Knuth [4] introduced a paper fold-
ing sequence and they used 0 for a crease that makes the paper upward
and 1 for a crease that makes the paper downward. Bates, Bunder and
Tognetti [2] investigated the structure of mirroring and interleaving in
the paper folding sequence and Bercoff [3] showed the effective construc-
tion of 2-uniform tag systems related to paper folding sequences. Lee,
Kim and Choi [7] explained the trace of generalized paper folding se-
quences using (0, 1) codes and (0, 1) matrices but they didn’t obtain the
exact numbers of upwards and downwards of generalized paper folding
sequences.
In this paper, we adapt the notations in [8]. We use R when we fold a
sheet of paper left over right, L when we fold a sheet of paper right over
left, U when we fold a sheet of paper bottom over top and D when we
fold a sheet of paper top over bottom. When we fold a sheet of paper
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left over right and rotate it 1800 counterclockwise, the creases are the
same as those of the paper folding right over left.
Let p, q, n ∈ N with p, q ≥ 2. If we fold a sheet of paper in p, left over
right, n times, we get a generalized paper folding sequence and denote
it by Rn

p . We define Ln
p , Un

p and Dn
p similarly.

If we fold a sheet of paper in p left over right and then fold the result in
q left over right, we get a paper folding sequence and denote it by RpRq.
If we iterate RpRq process n times, then we get a generalized paper
folding sequence and denote it by (RpRq)

n. Generalized paper folding
sequences (XpYq)

n where X,Y ∈ {R,L,U,D} are defined similarly.
The letters X and Y may be different at different occurrences.

Example 1.1. Some examples of generalized paper folding sequences
are given as follows :

(1) (R2L3)
2 : (0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0

0 1 1 1 )

(2) (R2U3)
2 :



0 1 1
0 1 0 1

0 1 1
0 1 0 1

0 1 1
0 0 1 1

1 1 0
1 0 1 0

1 1 0
1 0 1 0

1 1 0
0 0 1 1

0 1 1
0 1 0 1

0 1 1
0 1 0 1

0 1 1


For a paper folding sequence X, we define Xc the paper folding sequence
obtained by reversing the order and swapping 0s and 1s in X.
We define |X|0, |X|1 and |X| the number of all 0s in X, all 1s in X and
the number of all 0s and 1s in X, respectively. Lemma 1.2 (see [8]) is
obtained by the definitions of |X|, |X|0, |X|1 and Xc.
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Lemma 1.2. Let X be a paper folding sequence. Then we have
(1) |X| = |X|0 + |X|1.
(2) |Xc|0 = |X|1.
(3) |Xc|1 = |X|0.
(4) |Xc| = |X|.

For the classification of generalized paper folding sequences, we define
the following.

Definition 1.3. Let X and Y be paper folding sequences. If |X|0 =
|Y |0 and |X|1 = |Y |1, then we say that X and Y are the same type and
denote it by X ≡ Y .

For generalized paper folding sequences Xn
p where X ∈ {R,L,U,D},

we can easily classify them.

Theorem 1.4. Let p, n ∈ N with p ≥ 2. Then

(1.1) Rn
p ≡ Un

p ≡ Ln
p ≡ Dn

p .

Proof. If Rn
p is rotated 900, 1800 and 2700 counterclockwise, we obtain

Un
p , Ln

p and Dn
p , respectively. This implies that the numbers of 0s and

1s in Rn
p , Un

p , Ln
p and Dn

p are the same. Thus Rn
p ≡ Un

p ≡ Ln
p ≡ Dn

p .

Theorem 1.4 implies that Rn
p , U

n
p , L

n
p and Dn

p are classified into one
type.

2. Classification of (XpYq)
n where X,Y ∈ {R,L,U,D}

Let p, q, n ∈ N with p, q ≥ 2 and let X,Y ∈ {R,L,U,D}. Then there
are 16 generalized paper folding sequences (XpYq)

n as follows :

(RpRq)
n, (RpLq)

n, (RpUq)
n, (RpDq)

n,

(LpRq)
n, (LpLq)

n, (LpUq)
n, (LpDq)

n,(2.1)

(UpRq)
n, (UpLq)

n, (UpUq)
n, (UpDq)

n,

(DpRq)
n, (DpLq)

n, (DpUq)
n, (DpDq)

n.

First, we show that these 16 generalized paper folding sequences are
classified into four types.
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Theorem 2.1. Let p, q, n ∈ N with p, q ≥ 2. Then
(1) (RpRq)

n ≡ (UpUq)
n ≡ (LpLq)

n ≡ (DpDq)
n.

(2) (RpLq)
n ≡ (UpDq)

n ≡ (LpRq)
n ≡ (DpUq)

n.
(3) (RpUq)

n ≡ (UpLq)
n ≡ (LpDq)

n ≡ (DpRq)
n.

(4) (RpDq)
n ≡ (UpRq)

n ≡ (LpUq)
n ≡ (DpLq)

n.

Proof. If (RpRq)
n is rotated 900, 1800 and 2700 counterclockwise, we

obtain (UpUq)
n, (LpLq)

n and (DpDq)
n, respectively. Since a rotation of

a paper folding sequence doesn’t change the numbers of 0s and 1s, we
have (RpRq)

n ≡ (UpUq)
n ≡ (LpLq)

n ≡ (DpDq)
n. Thus we prove (1).

The proofs of (2), (3) and (4) are same as those of (1).

The next theorem is a modification of Theorem 2.1 in [8]. Note that
there are p− 1 1s in Rp, and all 1s in Rp are not divided at all in RpX
if X is a paper folding sequence related only to R or L. Thus we have
the following theorem.

Theorem 2.2. If X is a paper folding sequence related only to R or
L, then

(2.2) RpX =

{
(Xc 1X 1Xc 1X 1 · · · 1Xc 1X) if p is even

(X 1Xc 1X 1Xc 1 · · · 1Xc 1X) if p is odd,

and

(2.3) LpX =

{
(X 1Xc 1X 1Xc 1 · · · 1X 1Xc) if p is even

(X 1Xc 1X 1Xc 1 · · · 1Xc 1X) if p is odd.

In (2.2) and (2.3), X and Xc appear p
2 times and p

2 times, respectively,

when p is even. In addition, X and Xc appear p+1
2 times and p−1

2 times,
respectively, when p is odd.
From Theorem 2.2, we get the following result.

Lemma 2.3. If X and Y are paper folding sequences related only to
R or L, we have

(2.4) RpX ≡ LpX

and

(2.5) RpX ≡ RpY if X ≡ Y.
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Proof. By Theorem 2.2, we have

(2.6) RpX = (X 1Xc · · · Xc 1X) = LpX

when p is odd. Since X and Xc appear p+1
2 times and p−1

2 times, respec-
tively, and 1 appears p−1 times in RpX and LpX, we have RpX ≡ LpX
when p is odd. In addition,

(2.7) RpX = (Xc 1X · · · Xc 1X) and LpX = (X 1Xc · · · X 1Xc)

when p is even. Since X and Xc appear p
2 times and p

2 times, respectively,
1 appears p− 1 times in RpX and LpX, we have RpX ≡ LpX when p is
even. Thus we prove (2.4).
Assume that X ≡ Y . Then |X|0 = |Y |0 and |X|1 = |Y |1.
If p is even, we get

|RpX|0 = |Xc 1X · · · Xc 1X|0
= |Xc|0 + |1|0 + |X|0 + · · ·+ |Xc|0 + |1|0 + |X|0
= |X|1 + |1|0 + |X|0 + · · ·+ |X|1 + |1|0 + |X|0
= |Y |1 + |1|0 + |Y |0 + · · ·+ |Y |1 + |1|0 + |Y |0(2.8)

= |Y c|0 + |1|0 + |Y |0 + · · ·+ |Y c|0 + |1|0 + |Y |0
= |Y c 1Y · · · Y c 1Y |0
= |RpY |0,

and

|RpX|1 = |Xc 1X · · · Xc 1X|1
= |Xc|1 + |1|1 + |X|1 + · · ·+ |Xc|1 + |1|1 + |X|1
= |X|0 + |1|1 + |X|1 + · · ·+ |X|0 + |1|1 + |X|1
= |Y |0 + |1|1 + |Y |1 + · · ·+ |Y |0 + |1|1 + |Y |1(2.9)

= |Y c|1 + |1|1 + |Y |1 + · · ·+ |Y c|1 + |1|1 + |Y |1
= |Y c 1Y · · · Y c 1Y |1
= |RpY |1.

By (2.8) and (2.9), we have RpX ≡ RpY when p is even.
Similarly, we get RpX ≡ RpY when p is odd. Thus we prove (2.5).

As a result of Lemma 2.3, we have

(2.10) RpX ≡ LpY if X ≡ Y,

where X and Y are paper folding sequences related only to R or L.
From Lemma 2.3, we obtain the following result.
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Theorem 2.4. Let p, q, n ∈ N with p, q ≥ 2. Then

(2.11) (RpRq)
n ≡ (RpLq)

n.

Proof. We use the mathematical induction.
When n = 1, RpRq ≡ RpLq by (2.5) since Rq ≡ Lq.
Assume that (RpRq)

n ≡ (RpLq)
n for n = k.

We set Z = (RpRq)
k and W = (RpLq)

k. By the induction hypothesis,
we have Z ≡ W . Hence we get RqZ ≡ LqW by (2.10) since Z and W
are paper folding sequences related only to R or L. Thus

(2.12) Rp(RqZ) ≡ Rp(LqW )

by (2.5). Since (RpRq)
k+1 = Rp(RqZ) and (RpLq)

k+1 = Rp(LqW ), we
have, by (2.12),

(2.13) (RpRq)
k+1 ≡ (RpLq)

k+1.

Therefore (RpRq)
n ≡ (RpLq)

n for all n ∈ N.

By Theorem 2.1 and Theorem 2.4, we obtain the following.

Theorem 2.5. Let p, q, n ∈ N with p, q ≥ 2. Then

(RpRq)
n ≡ (UpUq)

n ≡ (LpLq)
n ≡ (DpDq)

n(2.14)

≡ (RpLq)
n ≡ (UpDq)

n ≡ (LpRq)
n ≡ (DpUq)

n.

Let p ∈ N with p ≥ 2. If X is a paper folding sequence related only
to R or L, then each 1 in Rp is not divided by X in RpX. But, if Y is
a paper folding sequence including U or D, each 1 in Rp is divided into
some 1s in RpY and so we denote it by 1Y . Then |1Y |1 > 1 = |1|1 and
|1Y |0 = 0 = |1|0. Now we obtain the following result from Theorem 2.2.

Theorem 2.6. Let p ∈ N with p ≥ 2.
(1) If X is a paper folding sequence related only to R or L, then

(2.15) RpX =

{
(Xc 1X 1Xc 1X · · · 1Xc 1X) if p is even

(X 1Xc 1X 1Xc · · · 1Xc 1X) if p is odd.

(2) If Y is a paper folding sequence including U or D, then

(2.16) RpY =

{
(Y c 1Y Y 1Y Y c 1Y Y · · · 1Y Y c 1Y Y ) if p is even

(Y 1Y Y c 1Y Y 1Y Y c · · · 1Y Y c 1Y Y ) if p is odd.
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Note that 1 of 1Y in (2.16) is a downward in Rp. We need to prove
the following lemmas in order to obtain the conclusion. The proof of
Lemma 2.7 is similar to that of Lemma 2.3.

Lemma 2.7. Let p ∈ N with p ≥ 2 and let X be a paper folding
sequence including U or D. Then we have

(2.17) RpX ≡ LpX.

Proof. Note that

(2.18) RpX = (X 1X Xc · · · Xc 1X X) = LpX

when p is odd. Since X and Xc appear p+1
2 times and p−1

2 times, respec-
tively, and 1X appears p−1 times in RpX and LpX, we have RpX ≡ LpX
when p is odd. In addition,

(2.19) RpX = (Xc 1X X · · · 1X X) and LpX = (X 1X Xc · · · 1X Xc)

when p is even. Since X and Xc appear p
2 times and p

2 times, respectively,
1X appears p− 1 times in RpX and LpX, we have RpX ≡ LpX when p
is even. Thus we prove (2.17).

Lemma 2.8. Let p ∈ N with p ≥ 2 and let X and Y be paper folding
sequences including U or D. Then we have

(2.20) RpX ≡ RpY if X ≡ Y and 1X ≡ 1Y ,

where 1 is a downward in Rp.

Proof. By the hypothesis, we have |X|0 = |Y |0, |X|1 = |Y |1, |1X |0 =
|1Y |0 and |1X |1 = |1Y |1. If p is even, we get

|RpX|0 = |Xc 1X X · · · Xc 1X X|0
= |Xc|0 + |1X |0 + |X|0 + · · ·+ |Xc|0 + |1X |0 + |X|0
= |X|1 + |1X |0 + |X|0 + · · ·+ |X|1 + |1X |0 + |X|0
= |Y |1 + |1Y |0 + |Y |0 + · · ·+ |Y |1 + |1Y |0 + |Y |0(2.21)

= |Y c|0 + |1Y |0 + |Y |0 + · · ·+ |Y c|0 + |1Y |0 + |Y |0
= |Y c 1Y Y · · · Y c 1Y Y |0
= |RpY |0,
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and

|RpX|1 = |Xc 1X X · · · Xc 1X X|1
= |Xc|1 + |1X |1 + |X|1 + · · ·+ |Xc|1 + |1X |1 + |X|1
= |X|0 + |1X |1 + |X|1 + · · ·+ |X|0 + |1X |1 + |X|1
= |Y |0 + |1Y |1 + |Y |1 + · · ·+ |Y |0 + |1Y |1 + |Y |1(2.22)

= |Y c|1 + |1Y |1 + |Y |1 + · · ·+ |Y c|1 + |1Y |1 + |Y |1
= |Y c 1Y Y · · · Y c 1Y Y |1
= |RpY |1,

By (2.21) and (2.22), we have RpX ≡ RpY when p is even.
Similarly, we get RpX ≡ RpY when p is odd. Thus we prove (2.20).

As a result of Lemma 2.7 and Lemma 2.8, we have

(2.23) RpX ≡ LpY if X ≡ Y and 1X ≡ 1Y ,

where X and Y are paper folding sequences including U or D, and 1 is
a downward in Rp or Lp.

From Lemma 2.7, Lemma 2.8 and (2.23), we have the following.

Corollary 2.9. Let q ∈ N with q ≥ 2 and let X and Y be paper
folding sequences including R or L. Then we have

(2.24) UqX ≡ DqY if X ≡ Y and 1X ≡ 1Y ,

where 1 is a downward in Uq or Dq.

We prove the next theorem using Lemma 2.8 and Corollary 2.9.

Theorem 2.10. Let p, q, n ∈ N with p, q ≥ 2. Then

(2.25) (RpUq)
n ≡ (RpDq)

n.

Proof. We use the mathematical induction.
When n = 1, RpUq ≡ RpDq by Lemma 2.8, since Uq ≡ Dq and 1Uq ≡ 1Dq

where 1 is a downward in Rp.
Assume that (RpUq)

n ≡ (RpDq)
n for n = k.

We set Z = (RpUq)
k and W = (RpDq)

k. By the induction hypothesis,
we have Z ≡ W . Note that 1 in Uq or Dq is divided by p 1s by Rp

although it is not divided by another Uq or Dq. Thus, for any k ∈ N,

(2.26) |1Z |1 = |1(RpUq)k |1 = pk = |1(RpDq)k |1 = |1W |1
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and

(2.27) |1Z |0 = 0 = |1W |0,
and so 1Z ≡ 1W by (2.26) and (2.27) when 1 is a downward in Uq or
Dq. Since Z and W are paper folding sequences including R or L and
1Z ≡ 1W , we get UqZ ≡ DqW by Corollary 2.9. Similarly, if 1 is a
downward in Rp, we have

(2.28) |1UqZ |1 = qk+1 = |1DqW |1 and |1UqZ |0 = 0 = |1DqW |0
and hence 1UqZ ≡ 1DqW . By Lemma 2.8, we get

(2.29) Rp(UqZ) ≡ Rp(DqW ).

Since (RpUq)
k+1 = Rp(UqZ) and (RpDq)

k+1 = Rp(DqW ), we have, by
(2.29),

(2.30) (RpUq)
k+1 ≡ (RpDq)

k+1.

Therefore (RpUq)
n ≡ (RpDq)

n for all n ∈ N.

By Lemma 2.8, Corollary 2.9 and Theorem 2.10, we obtain the fol-
lowing result.

Theorem 2.11. Let p, q, n ∈ N with p, q ≥ 2. Then

(RpUq)
n ≡ (UpLq)

n ≡ (LpDq)
n ≡ (DpRq)

n(2.31)

≡ (RpDq)
n ≡ (UpRq)

n ≡ (LpUq)
n ≡ (DpLq)

n.

Theorem 2.5 and Theorem 2.11 show that 16 generalized paper fold-
ing sequences (XpYq)

n where X,Y ∈ {R,L,U,D} can be classified into
two types at most. Now, we prove that 16 generalized paper folding
sequences can’t be classified into one type.

Theorem 2.12. Let p, q ∈ N with p, q ≥ 2. Then

(2.32) (RpRq)
n 6≡ (RpUq)

n

for any n ∈ N.

Proof. We prove |(RpRq)
n| < |(RpUq)

n| for all n ∈ N by the mathe-
matical induction.
Note that |Rc

q| = |Rq|, |U c
q | = |Uq| and |Rq| = |Uq|. In addition, |1| =

1 < q = |1Uq | if 1 is a downward in Rp. By Theorem 2.2 and Theorem
2.6, we have

(2.33) RpRq = (Rc
q 1Rq · · · 1Rq) and RpUq = (U c

q 1Uq Uq · · · 1Uq Uq)
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if p is even, and

(2.34) RpRq = (Rq 1Rc
q · · · 1Rq) and RpUq = (Uq 1Uq U

c
q · · · 1Uq Uq)

if p is odd. Hence

|RpRq| = |Rc
q|+ |1|+ |Rq|+ |1|+ · · ·+ |1|+ |Rc

q|+ |1|+ |Rq|
= |U c

q |+ |1|+ |Uq|+ |1|+ · · ·+ |1|+ |U c
q |+ |1|+ |Uq|

< |U c
q |+ |1Uq |+ |Uq|+ |1Uq |+ · · ·+ |U c

q |+ |1Uq |+ |Uq|(2.35)

= |RpUq|

if p is even, and

|RpRq| = |Rq|+ |1|+ |Rc
q|+ |1|+ · · ·+ |1|+ |Rc

q|+ |1|+ |Rq|
= |Uq|+ |1|+ |U c

q |+ |1|+ · · ·+ |1|+ |U c
q |+ |1|+ |Uq|

< |Uq|+ |1Uq |+ |U c
q |+ |1Uq |+ · · ·+ |U c

q |+ |1Uq |+ |Uq|(2.36)

= |RpUq|

if p is odd. Note that 1 and 1 of 1Uq in (2.35) and (2.36) are downwards
in Rp. Thus |RpRq| < |RpUq|.
Assume that |(RpRq)

n| < |(RpUq)
n| for n = k.

We set Z = (RpRq)
k and W = (RpUq)

k. Then Z is a paper folding
sequence related only to R, and W is a paper folding sequence including
R and U . In addition,

(2.37) (RpRq)
k+1 = Rp(Rq(RpRq)

k) = Rp(RqZ)

and

(2.38) (RpUq)
k+1 = Rp(Uq(RpUq)

k) = Rp(UqW ).

By Lemma 1.2 and the induction hypothesis, we have |Zc| = |Z| <
|W | = |W c|. Therefore

|RqZ| = |Zc|+ |1|+ |Z|+ |1|+ · · ·+ |1|+ |Z|
< |W c|+ |1|+ |W |+ |1|+ · · ·+ |1|+ |W |
< |W c|+ |1W |+ |W |+ |1W |+ · · ·+ |1W |+ |W |(2.39)

= |UqW |

if q is even, and
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|RqZ| = |Z|+ |1|+ |Zc|+ |1|+ · · ·+ |1|+ |Z|
< |W |+ |1|+ |W c|+ |1|+ · · ·+ |1|+ |W |
< |W |+ |1W |+ |W c|+ |1W |+ · · ·+ |1W |+ |W |(2.40)

= |UqW |
if q is odd. Note that 1 in (2.39) and (2.40) is a downward in Rq but 1
of 1W in (2.39) and (2.40) is a downward in Uq.
Similarly, we have

|Rp(RqZ)| = |(RqZ)c|+ |1|+ |RqZ|+ |1|+ · · ·+ |1|+ |RqZ|
< |(UqW )c|+ |1|+ |UqW |+ |1|+ · · ·+ |1|+ |UqW |
< |(UqW )c|+ |1UqW |+ |UqW |+ |1UqW |+ · · ·+ |UqW |(2.41)

= |Rp(UqW )|
if p is even, and

|Rp(RqZ)| = |RqZ|+ |1|+ |(RqZ)c|+ |1|+ · · ·+ |1|+ |RqZ|
< |UqW |+ |1|+ |(UqW )c|+ |1|+ · · ·+ |1|+ |UqW |
< |UqW |+ |1UqW |+ |(UqW )c|+ |1UqW |+ · · ·+ |UqW |(2.42)

= |Rp(UqW )|
if p is odd. Note that 1 and 1 of 1UqW in (2.41) and (2.42) are downwards
in Rp. By (2.41) and (2.42), we have

(2.43) |(RpRq)
k+1| = |Rp(RqZ)| < |Rp(UqW )| = |(RpUq)

k+1|.
Therefore |(RpRq)

n| < |(RpUq)
n| for all n ∈ N and this implies that

(RpRq)
n 6≡ (RpUq)

n for all n ∈ N.

As we mentioned before, Theorem 2.12 shows that 16 generalized
paper folding sequences (XpYq)

n where X,Y ∈ {R,L,U,D} are classified
into two types exactly.
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