Honam Mathematical J. **35** (2013), No. 3, pp. 389–394 http://dx.doi.org/10.5831/HMJ.2013.35.3.389

FIXED POINTS AND KERNEL OF THE PROJECTIVE HOLONOMY OF AN AFFINE MANIFOLD

Kyeongsu Park

Abstract. It is an interesting problem to study fixed points of an element in the holonomy group of an affine manifold. We compute the limit of a sequence of projective transformations and verify relations between fixed points and kernels.

1. Introduction

An affine manifold M is a smooth manifold whose coordinate transitions are affine maps. Since affine maps are analytic, an affine manifold is an analytic manifold. See [1], [2] and [6].

A coordinate chart can be analytically continued along a curve and induces a map D from the universal covering space \tilde{M} to \mathbb{R}^n . Obviously, D depends on the choice of the initial chart. The map D is called a *developing map* and the image $D(\tilde{M})$ is called a *developing image*.

For a deck transformation $\alpha \in \pi_1(M)$ there is an affine transformation $\rho(\alpha)$ such that

$$D(\alpha x) = \rho(\alpha)D(x).$$

The map ρ is a homomorphism from $\pi_1(M)$ into the affine group Aff(n) of \mathbb{R}^n . ρ is called the *holonomy homomorphism* and $\Gamma = \rho(\pi_1(M))$ the *holonomy group*.

Now we especially consider the homomorphism ψ from Aff(n) to PGL $(n + 1, \mathbb{R})$ given by the composition of the following two homomorphisms:

$$\begin{array}{rcccc} \operatorname{Aff}(n) & \longrightarrow & \operatorname{GL}(n+1,\mathbb{R}) & \longrightarrow & \operatorname{PGL}(n+1,\mathbb{R}) \\ (a,A) & \longmapsto & \begin{pmatrix} A & a \\ 0 & 1 \end{pmatrix} & \longmapsto & \begin{bmatrix} A & a \\ 0 & 1 \end{bmatrix}, \end{array}$$

Received May 3, 2013. Accepted June 26, 2013.

2010 Mathematics Subject Classification. 57N10, 57N15.

Key words and phrases. affine manifold, projective holonomy.

Kyeongsu Park

where $\begin{bmatrix} A & a \\ 0 & 1 \end{bmatrix}$ is the equivalence class containing $\begin{pmatrix} A & a \\ 0 & 1 \end{pmatrix}$. The group $\psi(\Gamma)$ is called the *projective holonomy group* of the affine manifold M.

In this paper, we show that there is a singular projective transformation $\sigma \in \overline{\psi(\Gamma)}$ such that $[\ker \sigma] \cap \mathbb{R}^n \neq \emptyset$ if M is closed and an element of Γ has a fixed point in \mathbb{R}^n .

T. Nagano and K. Yagi proved a result related to fixed points of holonomy group([4]): If the holonomy group Γ of a closed affine manifold has a fixed point then the developing image avoids the fixed point.

2. Limit of a sequence of projective transformations

In this section we describe limits of sequences of projective transformations.

Let M(n) be the set of $n \times n$ matrices whose entries are real numbers. M(n) can be identified with \mathbb{R}^{n^2} and therefore, projectivized. The projectivization of M(n) is denoted by PM(n). The equivalence class $[L] \in PM(n)$ containing L is called the *projectivization* of L. That is,

$$[L] = \{ X \in \mathcal{M}(n) - \{ O \} \mid X = kL \text{ for some } k \in \mathbb{R} - \{ 0 \} \}.$$

The equivalence class [L] can be considered as a map from $\mathbb{R}P^{n-1}$ onto itself whenever L is not singular. It is called a *nonsingular projective transformation*. The projective general linear group $\mathrm{PGL}(n)$, or $\mathrm{PGL}(n,\mathbb{R})$, is the group of non-singular projective transformations.

For a singular matrix L the projectivization of ker L is a projective subspace of $\mathbb{R}P^{n-1}$. We call it the *projective kernel* of [L] and denote ker[L]. The equivalence class [L] can be considered as a map from $\mathbb{R}P^{n-1} - \ker[L]$ to $\mathbb{R}P^{n-1}$. It is called a *singular projective trans-formation*. See also [3].

Let L be an $n \times n$ matrix with real entries and $\lambda_1, \ldots, \lambda_s$ complex eigenvalues of L. There exist square matrices $\Lambda_1, \ldots, \Lambda_s$ such that

(1)
$$\Lambda_r = \begin{pmatrix} \lambda_r & 1 & \\ & \ddots & 1 \\ & & \lambda_r \end{pmatrix},$$

and L is similar to

$$\begin{pmatrix} \Lambda_1 & & \\ & \ddots & \\ & & \Lambda_s \end{pmatrix}.$$

390

Fixed Points and Kernel of the Projective Holonomy of an Affine Manifold 391

When $\lambda_r = a_r + ib_r$ is not a real number, $\overline{\lambda}_r$ also is an eigenvalue and one of Λ_q coincides with

$$\bar{\Lambda}_r = \begin{pmatrix} \bar{\lambda}_r & 1 & \\ & \ddots & 1 \\ & & \bar{\lambda}_r \end{pmatrix}.$$

We note that $\begin{pmatrix} \Lambda_r & 0\\ 0 & \bar{\Lambda}_r \end{pmatrix}$ is similar to

(2)
$$\begin{pmatrix} C_r & I \\ & \ddots & I \\ & & C_r \end{pmatrix}$$

where $C_r = \begin{pmatrix} a_r & -b_r \\ b_r & a_r \end{pmatrix}$. Hence *L* is similar to (3) $\begin{pmatrix} A_1 & \\ & \ddots & \\ & & A_l \end{pmatrix}$

where A_k is of the form (1) with a real number λ_r or (2) with a complex number $\lambda_r = a_r + ib_r$.

Suppose that $\Lambda \in M(n)$ is a matrix of the form (1) with a real number $\lambda = \lambda_r$. For sufficiently large *m* we obtain

$$\Lambda^{m} = \begin{pmatrix} \binom{m}{0} \lambda^{m} & \binom{m}{1} \lambda^{m-1} & \cdots & \binom{m}{n-1} \lambda^{m-n+1} \\ & \binom{m}{0} \lambda^{m} & \cdots & \binom{m}{n-2} \lambda^{m-n+2} \\ & & \ddots & \\ & & & \binom{m}{0} \lambda^{m} \end{pmatrix}$$

The (1, n)-entry $\binom{m}{n-1}\lambda^{m-n+1}$ has the largest absolute value among entries of Λ^m . Hence $[\Lambda]^m$ converges to a projective transformation $[\Lambda_0]$ and Λ_0 has only a nonzero entry at (1, n). The matrix Λ_0 is not singular if and only if n = 1 and $\lambda \neq 0$. The kernel Λ_0 is of dimension n-1 if $\lambda \neq 0$.

Suppose that $\Lambda \in \mathcal{M}(n)$ is a matrix of the form (2) with a complex number λ_r . The similar arguments implies that the sequence $[\Lambda]^m$ has a convergent subsequence. The limit $[\Lambda_0]$ of the subsequence is a singular projective transformation if and only if n > 2. The kernel ker Λ_0 is of dimension n-2.

In general, suppose that L is of the form (3). Let $[L_0]$ be the limit of a convergent subsequence of $[L]^m$ and

$$\mu = \max\{|\lambda_1|, \dots, |\lambda_s|\}.$$

If $|\lambda_r| < \mu$ for some r and the submatrix A_k is of the form (1) with a real number λ_r or (2) with a complex number λ_r then L_0 is singular.

If $|\lambda_r| = \mu$ for all r and L is diagonalizable then L_0 is nonsingular. As a result,

Proposition 1. Suppose that $L \in M(n)$ is a non-singular matrix and a subsequence of $[L^m]$ converges to $[L_0]$. L_0 is non-singular if and only if L is similar to cR for a nonzero real number c and an orthogonal matrix R.

Proof. We note that a matrix is orthogonal if and only if it is similar to (3) where A_k is one of the following 4 forms:

$$(1), (-1), \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}, \begin{pmatrix} -\cos\theta & \sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}.$$

Applying the above arguments, our result follows.

3. Fixed point of an affine holonomy

Suppose that an affine transformation (a, A) has a fixed point, That is, there exists a point $x \in \mathbb{R}^n$ such that a + Ax = x. Let

$$L = \begin{pmatrix} A & a \\ 0 & 1 \end{pmatrix}, \quad \xi = \begin{pmatrix} x \\ 1 \end{pmatrix}.$$

Then the nonsingular matrix L has a point ξ as a fixed point. Hence ξ is an eigenvector of L with the corresponding eigenvalue 1.

Suppose that L has an eigenvalue λ such that $|\lambda| > 1$. The arguments in section 2 implies that $[L]^m$ has a subsequence which converges to $[L_0]$ and $\xi \in \ker L_0$.

Suppose that L has an eigenvalue λ and $|\lambda| < 1$. Then ξ is a fixed point of

$$L^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}a \\ 0 & 1 \end{pmatrix}$$

and L^{-1} has an eigenvalue $1/\lambda$ and $|1/\lambda| > 1$.

If L is not similar to an orthogonal matrix and any eigenvalue of L is of absolute value 1, then $[L]^m$ has a subsequence which converges to

392

Fixed Points and Kernel of the Projective Holonomy of an Affine Manifold 393

 $[L_0]$ and $\xi \in \ker L_0$ as section 2. Hence we have

Theorem 1. Let M be an affine manifold with the holonomy group Γ . If $\gamma \in \Gamma$ has a fixed point and is not similar to an orthogonal matrix, then there is a singular projective transformation $\sigma \in \overline{\psi(\Gamma)}$ such that $\ker \sigma \cap \mathbb{R}^n \neq \emptyset$.

Now we introduce a set, which is called a *limit set*, defined in [5]. Let M be an affine manifold with the developing map $D : \tilde{M} \to \mathbb{R}^n$. Let E_M be the set of those points y which is the end point c(1) of a continuous curve c in \mathbb{R}^n such that :

(4) there exists a curve $\tilde{c}(t) \in \tilde{M}$ for $0 \leq t < 1$, $D(\tilde{c}(t)) = c(t)$ and $\tilde{c}(1)$ can not be defined continuously in \tilde{M} .

The following Theorem is proved in [5].

Theorem 2. Let M be a closed affine manifold. For any $x \in E_M$ there exists $\sigma \in \overline{\psi(\Gamma)}$ such that $x \in \ker \sigma$.

Now, suppose that M is a closed affine manifold and $(a, A) \in \Gamma$ has a fixed point x. If $x \notin \Omega$ then obviously E_M is not empty.

We assume that $x = D(u) \in \Omega$ for some $u \in M$. Let $\alpha : M \to M$ be a deck transformation satisfying $\rho(\alpha) = (a, A)$ and $h : [0, 1] \to \tilde{M}$ a curve starting at u ending at $\alpha(u)$. The curve $D \circ h$ is a loop such that $(D \circ h)(0) = (D \circ h)(1) = x$. Hence there is an homotopy

$$H: [0,1] \times [0,1] \rightarrow \mathbb{R}^n$$

satisfying

 $H(\cdot, 0) = D \circ h$

and

$$H(\cdot, 1) = H(0, \cdot) = H(1, \cdot) = x.$$

Since $u \neq \alpha(u)$, there is no homotopy

$$\tilde{H}: [0,1] \times [0,1] \to \tilde{M}$$

such that $D \circ H = H$. Hence a curve $c = H(t_0, \cdot)$ starting at $(D \circ h)(t_0)$ for some t_0 satisfies the condition (4).

In fact, \tilde{c} in (4) with $D \circ \tilde{c} = c$ is not defined on [0, 1) but on $[0, t_1)$ for some $t_1 \in (0, 1)$ in this case.

Theorem 3. Let M be a closed affine manifold. If an element in the holonomy group Γ has a fixed point, then there is a singular projective

Kyeongsu Park

transformation $\sigma \in \overline{\psi(\Gamma)}$ such that ker $\sigma \cap \mathbb{R}^n \neq \emptyset$.

Proof. Since E_M is not empty, Theorem 3 implies our result.

References

- Ch. Ehresmann, Sur les espaces localement homogenes, Enseign. Math. 35 (1936), 317-333.
- [2] R. S. Kulkarni, On The Principle of Uniformization, Jour. Diff. Geom. 13 (1978), 109-138.
- [3] P. J. Myberg, Untersuchungen über die automorphen Funktionen beliebig vieler Variablen, Acta Math. 46 (1925), 215-336.
- [4] T. Nagano and K. Yagi, The Affine Structures On The Real Two-Torus (I), Osaka J. Math., 11 (1974), 181-210.
- [5] K. Park Limit Sets of Projectively Flat Manifolds, Comm. Korean Math. Soc. 15(3) (2000), 541-547.
- [6] D. Sullivan and W. Thurston, Manifolds with Canonical Coordinate Charts: Some Examples, Endeign. Math. 29 (1983), 15-25.

Kyeongsu Park Department of Game, Jeonju University, Jeonju 560-759, Korea. E-mail: pine@jj.ac.kr

394

##