References
- Agrawal, A. and Tratnyek, P.G., 1996, Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30(1), 153-160.
- Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17(2), 513-886.
- Eisenberg, G., 1943, Colorimetric determination of hydrogen peroxide, Ind. Eng. Chem. Anal. Ed., 15(5), 327-328.
- Hatchard, C.G. and Parker, C.A., 1956, A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer, Proc. Roy. Soc. Lon. A, 235(1203), 518-536. https://doi.org/10.1098/rspa.1956.0102
- Jeong, J. and Yoon, J., 2005, pH effect on OH radical production in photo/ferrioxalate system, Water Res., 39(13), 2893-2900. https://doi.org/10.1016/j.watres.2005.05.014
- Joo, S.H., Feitz, A.J., and Waite, T.D., 2004, Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Technol., 38(7), 2242-2247. https://doi.org/10.1021/es035157g
- Keenan, C.R. and Sedlak, D.L., 2008a, Factors affecting the yield of oxidants from the reaction of nanoparticulate zerovalent iron and oxygen, Environ. Sci. Technol., 42(4), 1262-1267. https://doi.org/10.1021/es7025664
- Keenan, C.R. and Sedlak, D.L., 2008b, Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen, Environ. Sci. Technol., 42(18), 6936-6941. https://doi.org/10.1021/es801438f
- Lee, C. and Sedlak, D.L., 2008, Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen, Environ. Sci. Technol., 42(22), 8528-8533. https://doi.org/10.1021/es801947h
-
Lee, Y., Jeong, J., Lee, C., Kim, S., and Yoon, J., 2003, Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/
$H_{2}O_{2}$ process, Chemosphere, 51, 901-912. https://doi.org/10.1016/S0045-6535(03)00044-4 - Matheson, L.J. and Tratnyek, P.G., 1994, Reductive Dehalogenation of Chlorinated Methanes by Iron Metal, Environ. Sci. Technol., 28(12), 2045-2053. https://doi.org/10.1021/es00061a012
- Ministry of Environment, 2012, 2011 Annual groundwater quality monitoring report.
-
Nam, S., Renganathan, V., and Tratnyek, P.G., 2001, Substituent effects on azo dye oxidation by the Fe(III)-EDTA-
$H_{2}O_{2}$ system, Chemosphere, 45(1), 59-65. https://doi.org/10.1016/S0045-6535(00)00599-3 - Pham, A.L., Lee, C., Doyle, F.M., and Sedlak, D.L., 2009, A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values, Environ. Sci. Technol., 43(23), 8930-8935. https://doi.org/10.1021/es902296k
- Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R., and Campbell, T. J., 1996, Reductive elimination of chlorinated ethylenes by zero-valent metals, Environ. Sci. Technol., 30(8), 2654-2659. https://doi.org/10.1021/es9509644
- Roy, G., de Donato, P., Görner, T., and Barres, O., 2003, Study of tropaeolin degradation by iron-proposition of a reaction mechanism, Water Res., 37(20), 4954-4964. https://doi.org/10.1016/S0043-1354(03)00438-X
-
Ruangchainikom, C., Liao, C.-H., Anotai, J., and Lee, M.-T., 2006, Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and
$CO_{2}$ -bubbled system, Water Res., 40(2), 195-204. https://doi.org/10.1016/j.watres.2005.09.047 - Safarzadeh-Amiri, A., Bolton, J.R., and Cater, S.R., 1997, Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water, Water. Res., 31(4), 787-798. https://doi.org/10.1016/S0043-1354(96)00373-9
- Tamura, H., Goto, K., Yotsuyanagi, T., and Nagayama, M., 1974, Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III), Talanta, 21(4), 314-318. https://doi.org/10.1016/0039-9140(74)80012-3
-
Xue, X., Hanna, K., Despas, C., Wu, F., and Deng, N., 2009, Effect of chelating agent on the oxidation rate of PCP in the magnetite/
$H_{2}O_{2}$ system at neutral pH, J. Mol. Cat. A-Chem., 311(1-2), 29-35. https://doi.org/10.1016/j.molcata.2009.06.016 - Zecevic, S., Drazic, D.M., and Gojkovic, S., 1989, Oxygen reduction on iron. Part III. An analysis of the rotating disk-ring electrode measurements in near neutral solutions, J. Electroanal. Chem., 265(1-2), 179-193. https://doi.org/10.1016/0022-0728(89)80188-3
- Zecevic, S., Drazic, D.M., and Gojkovic, S., 1991, Oxygen reduction on iron. Part IV. The reduction of hydrogen peroxide as the intermediate in oxygen reduction reaction in alkaline solutions, Electrochim. Acta, 36(1), 5-14. https://doi.org/10.1016/0013-4686(91)85172-4
-
Zhou, T., Li, Y.Z., Ji, J., Wong, F.S., and Lu, X.H., 2008, Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/
$H_{2}O_{2}$ Fenton-like system: Kinetic, pathway and effect factors, Sep. Purif. Technol., 62(3), 551-558. https://doi.org/10.1016/j.seppur.2008.03.008
Cited by
- Assessment of Sludge Solubilization by Aeration and Zero-valent Iron As a Pre-treatment for Anaerobic Digestion vol.24, pp.3, 2016, https://doi.org/10.17137/korrae.2016.24.3.53