DOI QR코드

DOI QR Code

초임계 수열법으로 합성한 Li(Ni0.5Mn0.3Co0.2)O2 양극 활물질의 소성 온도영향에 따른 구조 및 전기화학적 특성

Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2 as Cathode Material by Supercritical Hydrothermal Synthesis Method

  • 추소연 (충남대학교 녹색에너지기술전문대학원) ;
  • 범윤경 (충남대학교 정밀응용화학과) ;
  • 김성수 (충남대학교 녹색에너지기술전문대학원) ;
  • 한규승 (충남대학교 녹색에너지기술전문대학원)
  • Choo, Soyeon (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Beom, YunGyeong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kim, Sungsu (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Han, Kyooseung (Graduate School of Green Energy Technology, Chungnam National University)
  • 투고 : 2013.07.16
  • 심사 : 2013.08.09
  • 발행 : 2013.08.31

초록

리튬이온 전지의 양극물질로써, 초임계 수열합성법을 이용해 만들어진 분말은 각각 $850^{\circ}C$$900^{\circ}C$ 공기 분위기에서 10시간씩 소성하여 $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$를 합성하였다. 온도를 조절함에 따라 합성된 분말은 어떠한 영향을 받는지 x-ray pattern, SEM-image, 물리적 특성과 전기화학적 거동을 관찰해 연구하였다. 그 결과, $900^{\circ}C$에서 열처리된 물질의 입자크기가 $850^{\circ}C$에서 열처리된 물질에 비해 더 큰 것으로 나타났고, 특히 초기 가역용량 163.84 mAh/g (0.1 C/2.0-4.3 V), 186.87 mAh/g (0.1 C/2.0-4.5 V)의 가역용량을 나타내면서 훌륭한 전기화학적 거동을 보였으며, 50th cycle에서도 91.49%(0.2 C/2.0-4.3 V)와 90.36%(0.2 C/2.0-4.5 V)의 높은 용량 유지율을 보였다.

As the cathode material for li-ion battery, $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ were synthesized by supercritical hydrothermal method and calcined $850^{\circ}C$ and $900^{\circ}C$ for 10hrs in air. The effect of temperature in the heat treatment on the powder and its performance were studied of xray diffraction pattern, SEM-image, physical properties and electrochemical behaviors. As a result, calcined at $900^{\circ}C$ material particle size more increase than calcined at $850^{\circ}C$ material, especially shows excellent electrochemical performance with initial reversible specific capacity of 163.84 mAh/g (0.1C/2.0-4.3V), 186.87 mAh/g (0.1C/2.0-4.5V) and good capacity retention of 91.49% (0.2C/2.0-4.3V) and 90.36% (0.2C/2.0-4.5V) after 50th charge/discharge cycle.

키워드

참고문헌

  1. T. H. Cho, S. M. Park and M. Yoshio, 'Effect of synthesis condition on the structure and electrochemical properties of Li[$Ni_{1/3}Mn_{1/3}Co_{1/3}$]$O_{2}$perpared by carbonate coprecipitation method' J. Power Sources., 142, 306 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.016
  2. J.-H. Kim, 'Electrochemical performance of Li[$Li_{x}Ni_{(1−3x)/2}Mn_{(1+x)/2}$]$O_{2}$ cathode materials synthesized by a sol-gel method' J. Power Sources., 119, 166 (2003).
  3. E. Y. Bang, Daniel R. Mumm, and HyeRyoung Park, 'Lithium nickel cobalt oxides synthesized from $Li_{2}CO_{3}$, NiO and $Co_{3}O_{4}$ by the solid-state reaction method' Ceramics International., 38, 3635 (2012). https://doi.org/10.1016/j.ceramint.2012.01.002
  4. Y. Nishida, K. Nakane, and T. Satoh, 'Synthesis and properties of gallium-doped $LiNiO_{2}$ as the cathode material for lithium secondary batteries' J. Power Source., 68, 561 (1997). https://doi.org/10.1016/S0378-7753(97)02535-4
  5. M. Y. Song, J. Song, E. Y. Bang, and D. R. Mumm, 'Electrochemical properties of $LiNi_{1-y}Co_{y}O_{2}$ cathode materials synthesized from different starting materials by the solid-state reaction method' CeramicsInternational., 35, 1625 (2009).
  6. Sung-Woo Cho, Jeong-Hun Ju andSeong-HyeonRyn, 'Structure and Electrochemical Characterization of Li $Ni_{0.5}Mn_{0.3}Co_{0.2}O_{2}$ as the Cathode Material Synthesized by Simple-combustion Method' J. Korean Electrochem. Soc., 13, 4 (2010).
  7. HU Chuan-yue, GUO Jun, DU Yong, XU Hong-hui, and HE Yue-hui, 'Effect of synthesis condition on layered Li[$Ni_{1/3}Co_{1/3}Mn_{1/3}$]$O_{2}$ positive-electrode via hydroxide co-precipitation method for lithium-ion batteries' Trans Nonferrous Met. Soc. China., 21, 114 (2011). https://doi.org/10.1016/S1003-6326(11)60686-9
  8. Ping He, Haoran Wang, Li Qi, and Tetsuya Osaka, 'Electrochemical characteristics of layerd $LiNi_{1/3}Mn_{1/3}Co_{13}O_{2}$ and with different synthesis conditions' J. Power Source., 160, 627 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.053
  9. Tao Wang, Zong-Huai Liu, Lihong Fan, Yinfeng Han andXiuhua Tang, 'Synthesis optimization of $Li_{1+x}[Mn_{0.45}Co_{0.4}0Ni_{0.15}]O_{2}$ with different spherical sizes via co-precipitation' Power Technology., 187, 124 (2008). https://doi.org/10.1016/j.powtec.2008.02.002
  10. Gi-Won Yoo, Hyo-Jin Jeon and Jong-Tae Son, 'Effect of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]$O_{2}$ Lithium-ion Cathode Materials' J. Korean Electrochem. Soc., 16, 59 (2013). https://doi.org/10.5229/JKES.2013.16.2.59
  11. De-Cheng Li, TakahisaMuta, Lian-Qi Zhang, Masaki Yoshio, and Hideyuki Noguchi, 'Effect of synthesis method on the electrochemical performance of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_{2}$' J. Power Source., 132, 150 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.016
  12. Hyun-Soo Kim, Ke-Tack Kim andPadikkasuPeriasamy, 'Synthesis, and Electrochemical Performance of $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_{2}$ Cathede Material for Lithium Rechargeable Battery' J. Electronic Materials Letter., 2, 119 (2006).
  13. Xiangfeng Zhang, Zhaoyin Wen, Xuelin Yang, XiaoxiongXu, and Jingxin Li, 'Synthesis and electrochemical behavior of a new layered cathode material $LiCo_{1/2}Mn_{1/3}Ni_{1/6}O_{2}$' J. Materials Research Bulletin., 41, 662 (2006). https://doi.org/10.1016/j.materresbull.2005.08.033

피인용 문헌

  1. The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.149