DOI QR코드

DOI QR Code

Effect of Wet-Spinning and Heat-Treatment on the Structure and Mechanical Properties of Polyhydroxyamide Fibers(I) -Coagulation Behavior at Various Coagulation Conditions-

폴리히드록시아미드 섬유의 제조와 열처리에 따른 구조-물성 상관관계(I) -다양한 고화조건에 따른 고화거동-

  • Kang, Chan Sol (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Jee, Min Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 강찬솔 (충남대학교 유기소재.섬유시스템공학과) ;
  • 지민호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 백두현 (충남대학교 유기소재.섬유시스템공학과)
  • Received : 2013.05.18
  • Accepted : 2013.06.24
  • Published : 2013.08.31

Abstract

Polyhydroxyamide (PHA) was synthesized using low temperature solution polymerization of 3,3'-dihydroxybenzidine (DHB) and isophthaloyl chloride (IPC) in N,N-dimethylacetamide (DMAc). In order to study wet-spinning of PHA fibers, the diffusion property of DMAc in various coagulants and the effect of coagulation bath temperature were evaluated. The initial diffusion rate of DMAc, and the SEM images and mechanical properties of PHA fibers, demonstrated that the coagulation in ethanol at $20^{\circ}C$ was the most optimal among all the conditions examined. The tensile strength and initial modulus of PHA fibers increased, while its breaking strain decreased with increasing spin draw ratio (SDR). The wide-angle X-ray diffraction (WAXD) experiment revealed that the crystallinity of PHA fibers increased with increasing SDR. The process-structure-property relationship among PHA fibers under various coagulation conditions was also investigated.

Keywords

References

  1. 박성민, 복진선, 신우영, 김상욱, 조대현, "슈퍼소재 융합제품에 대한 국내.외 연구동향", Fiber Tech Ind, 2011, 15(1), 61-75.
  2. J. F. Wolfe and F. E. Arnold, "Rigid-rod Polymers. 1. Synthesis and Thermal Properties of Para-aromatic Polymers with 2,6-benzobisoxazole Units in the Main Chain", Macromolecules, 1981, 14(4), 909-915. https://doi.org/10.1021/ma50005a004
  3. M. E. Hunsaker, G. E. Price, and S. J. Bai, "Processing, Structure and Mechanics of Fibres of Heteroaromatic Oxazole Polymers", Polymer, 1992, 33(10), 2128-2135. https://doi.org/10.1016/0032-3861(92)90879-2
  4. P. K. Kim, P. Pierini, and R. Wessling, "Thermal and Flammability Properties of Poly(p-phenylene-benzobisoxazole)", J Fire Sci, 1993, 11(4), 296-307. https://doi.org/10.1177/073490419301100402
  5. Y. Imai, K. Itoya, and M. A. Kakimoto, "Synthesis of Aromatic Polybenzoxazoles by Silylation Method and Their Thermal and Mechanical Properties", Macromol Chem Phys, 2000, 201(17), 2251-2256. https://doi.org/10.1002/1521-3935(20001101)201:17<2251::AID-MACP2251>3.0.CO;2-W
  6. C. Gao and S. W. Kantor, "Synthesis of Precursor Flame Suppressing Polymers", Spring SPE Meeting, 1996, 3072- 3073.
  7. R. J. Farris, J. H. Jang, and S. K. Park, "Characterization of Two Precursor Polyblends: Polyhydroxyamide and Poly (amic acid)", Polym Eng Sci, 2000, 40(2), 320-329. https://doi.org/10.1002/pen.11165
  8. J. H. Chang, M. J. Chen, and R. J. Farris, "Effect of Heat Treatment on the Thermal and Mechanical Properties of a Precursor Polymer: Polyhydroxyamide", Polymer, 1998, 39(23), 5649-5654. https://doi.org/10.1016/S0032-3861(97)10364-0
  9. D. H. Baik and W. O. Lee, "A Study on the High Performance Nanocomposite Fibers Based on Polybenzoxazoles (I): Synthesis and Characterization of Polyhydroxyamide-clay Nanocomposites", Text Sci Eng, 2005, 42(5), 296-301.
  10. D. H. Baik and S. J. Im, "Preparation of Nanofibers Using Precursor Polymers to Polybenzoxazoles", Text Sci Eng, 2006, 43(3), 114-120.
  11. H. Wang and T. S. Chung, "The Evolution of Physicochemical and Gas Transport Properties of Thermally Rearranged Polyhydroxyamide (PHA)", J Membrane Sci, 2011, 385, 86-95.
  12. D. R. Paul, "Diffusion During the Coagulation Step of Wet- Spining", J Appl Polym Sci, 1968, 12(3), 383-402. https://doi.org/10.1002/app.1968.070120301
  13. Q. Baojun, P. Ding, and W. Zhenqiou, "The Mechanism and Characteristics of Dry-jet Wet-Spinning of Acrylic Fibers", Adv Polym Tech, 1986, 6(4), 509-529. https://doi.org/10.1002/adv.1986.060060408
  14. J. P. Bell and J. H. Dumbleton, "Changes in the Structure of Wet-Spun Acrylic Fibers During Processing", Text Res J 1971, 41(3), 196-203. https://doi.org/10.1177/004051757104100302
  15. M. B. Radishevskii and A. T. Serkov, "Coagulation Mechanism in Wet Spinning of Fibres", Fibre Chem, 2005, 37(4), 266-271. https://doi.org/10.1007/s10692-005-0092-7
  16. X. G. Dong, C. G. Wang, and C. Juan, "Study on the Coagulation Process of Polyacrylonitrile Nascent Fibers during Wet-spinning", Polym Bull, 2007, 58(5-6), 1005-1012. https://doi.org/10.1007/s00289-006-0717-x
  17. X. G. Dong, C. G. Wang, Y. J. Bai, and W. W. Cao, "Effect of DMSO/$H_2O$ Coagulation Bath on the Structure and Property of Polyacrylonitrile Fibers during Wet-Spinning", J Appl Polym Sci, 2007, 105(3), 1221-1227. https://doi.org/10.1002/app.25665
  18. P. Sobhanipour, R. Cheraghi, and A. A. Volinsky, "Thermoporometry Study of Coagulation Bath Temperature Effect on Polyacrylonitrile Fibers Morphology", Thermochim Acta, 2011, 518(1-2), 101-106. https://doi.org/10.1016/j.tca.2011.02.015
  19. S. K. Park, S. H. Cho, and R. J. Farris, "Dry-jet Wet Spinning of Polyhydroxyamide Fibers", Fiber Polym, 2000, 1(2), 92-96. https://doi.org/10.1007/BF02875191
  20. A. Ziabicki, "Fundmentals of Fibre Formation", John Wiley & Sons, NY, 1976, pp.310-320.
  21. T. Takajima, "Advanced Fiber Spinning Technology", Society of Fiber Science & Technology, CB, 1996, pp.65-78.
  22. I. C. Um, H. B. Cho, and G. D. Kang, "Wet Spinning of Pydroxypropyl Methylcellulose", Text Sci Eng, 2009, 46(5), 252-260.
  23. D. R. Paul, "Spin Orientation during Acrylic Fiber Formation by Wet-Spinning", J Appl Polym Sci, 1969, 13(5), 817-826. https://doi.org/10.1002/app.1969.070130501
  24. K. Tashiro, J. Yoshino, T. Kitagawa, H. Murase, and K. Yabuki, "Crystal Structure and Packing Disorder of Poly(pphenylenebenzobisoxazole): Structural Analysis by an Organized Combination of X-ray Imaging Plate System and Computer Simulation Technique", Macromolecules, 1998, 31(16), 5430-5440. https://doi.org/10.1021/ma980113r
  25. K. Tashiro, H. Hama, J. I. Yoshino, Y. Abe, T. Kitagawa, and K. Yabuki, "Confirmation of the Crystal Structure of Poly(pphenylenebenzobisoxazole) by the X-ray Structure Analysis of Model Compounds and the Energy Calculation", J Polym Sci Part B: Polym Phys, 2001, 13(12), 1296-1311.
  26. T. Fukumaru, T. Fujigaya, and N. Nakashima, "Extremely High Resistive Poly(p-phenylene benzobisoxazole) with Desired Shape and Form from a Newly Synthesized Soluble Precursor", Macromolecules, 2012, 45(10), 4247-4253. https://doi.org/10.1021/ma3006526
  27. H. L. Doppert and G. J. Harmsen, "The Influence of the Stretch Ratio on the Rate of Diffusion in a Wet-Spinning Process", J Appl Polym Sci, 1973, 17(3), 893-903. https://doi.org/10.1002/app.1973.070170319

Cited by

  1. Synthesis and Thermal Cyclization of Aromatic Polyhydroxyamides(II) -Effect of Fluoro-substituents- vol.50, pp.5, 2013, https://doi.org/10.12772/TSE.2013.50.308
  2. Study on Polyhydroxyamide/Carbon Nanotube Nanocomposite Fibers vol.52, pp.6, 2015, https://doi.org/10.12772/TSE.2015.52.361