DOI QR코드

DOI QR Code

Deduction of Aerosol Composition and Absorption factors using AERONET sun/sky radiometer

AERONET 선포토미터 데이터를 이용한 에어로졸 조성 및 광흡수 특성 인자 도출

  • Noh, Youngmin (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Chulkyu (Meteorological Application Research Laboratory, National Institute of Meteorological Research) ;
  • Choi, Sungchul (SOLETOP Inc.)
  • Received : 2013.08.15
  • Accepted : 2013.08.23
  • Published : 2013.08.30

Abstract

The Modified Aerosol Factor (MAF) derived from spectral Single-Scattering Albedo (SSA) values was created to express the light absorption properties according to aerosol types. As a factor of the MAF, slope of a linear regression line for SSA at four wavelengths shows positive value for dust aerosol, while negative values were found for mixing with other types of aerosol. The negative values were shown by anthropogenic and smoke aerosols. The modified SSA at 1020 nm was also calculated. MAF was calculated by summing the slope and modified SSA. MAF was -1.0 for the anthropogenic and smoke aerosol and 1.5 for the dust particles. Those values were decreased by increasing light absorption property.

본 연구에서는 에어로졸의 종류에 따른 광흡수 특성을 표시할 수 있는 새로운 에어로졸 파라미터인 Modified Aerosol Factor(MAF)를 산출하였다. MAF는 AERONET의 선포토미터로부터 산출되는 4 파장(440, 675, 870 그리고 1020 nm)의 단산란알베도로부터 도출되었다. 에어로졸 종류에 단산란알베도 값이 파장 증가에 따라 다른 형태를 보이는 점으로부터 4파장의 단산란알베도를 이용하여 선형회귀분석을 수행하고 분석값의 기울기 값을 산출하였다. 먼지입자는 기울기 값이 양의 값을 보이고, 순수한 먼지입자 일수록 높은 값을 보였다. 다른 종류의 에어로졸이 혼합됨에 따라 기울기 값은 감소하였다. 먼지입자를 제외한 오염입자와 smoke 입자는 음의 값을 보였다. 광흡수 특성의 차이를 파악하기 위하여 1020 nm에서의 단산란알베도 값을 보정하였다. 보정된 단산란알베도와 기울기 값을 합하여 MAF를 도출하였다. MAF는 오염입자와 smoke 입자는 -1, 먼지입자는 1.5의 값을 보였으며, 서로 다른 에어로졸 종류별로 광흡수 특성이 높을수록 낮은 값의 분포를 보였다.

Keywords

References

  1. Bergstrom, R. W. 1973. Extinction and Absorption Coefficients of the Atmospheric Aerosol as a Function of Particle Size, Contributions to Atmospheric Physics, 46: 223-234.
  2. Bergstrom, R.W., P. Pilewskie, P.B. Russell, J. Redemann, T.C. Bond, P.K. Quinn, and B. Sierau, 2007. Spectral absorption properties of atmospheric aerosols, Atmospheric Chemistry and Physics, 7: 5937-5943. https://doi.org/10.5194/acp-7-5937-2007
  3. Clarke, A., C. McNaughton, V. Kapustin, Y. Shinozuka, S. Howell, J. Dibb, J. Zhou, B. Anderson, V. Brekhovskikh, H. Turner and M. Pinkerton, 2007. Biomass Burning and Pollution Aerosol over North America: Organic Components and their influence on Spectral Optical Properties and Humidification Response, Journal of Geophysical Research, 112: D12S18, doi:10.1029/2006JD007777.
  4. Dubovik, O., B.N. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, and M.D. King, 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59: 590-608. https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
  5. Fialho, P., A.D.A. Hansen, and R.E. Honrath, 2005. Absorption coefficients by aerosols in remote areas: A new approach to decouple dust and black carbon absorption coefficients using sevenwavelength Aethalometer data, Journal of Aerosol Science, 36(2): 267-282. https://doi.org/10.1016/j.jaerosci.2004.09.004
  6. Gyawali, M., W.P. Arnott and H. Moosmuller, 2009. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and nonabsorbing coatings on spectral light absorption, Atmospheric Chemistry and Physics: 8007-8015.
  7. Hansen, A.D.A., H. Rosen, and T. Novakov, 1984. The aethalometer: An instrument for the real-time measurement of optical absorption by aerosol particles, Science of the Total Environment, 36: 191-196. https://doi.org/10.1016/0048-9697(84)90265-1
  8. Intergovernmental Panel on Climate Change (IPCC), 2007. Climate change 2007: the scientific basis. In: Solomon, S. (Ed.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York.
  9. Meloni, D., A. di Sarra, G. Pace, and F. Monteleone, 2006. Aerosol optical properties at Lampedusa (Central Mediterranean). 2. Determination of single scattering albedo at two wavelengths for different aerosol types, Atmospheric Chemistry and Physics, 6: 715-727. https://doi.org/10.5194/acp-6-715-2006
  10. Menon, S., J. Hansen, L. Nazarenkk, and Y. Luo, 2002. Climate effects of black carbon aerosols in China and India, Science, 297: 2250-2253. https://doi.org/10.1126/science.1075159
  11. Moosmuller, H., J.P. Engelbrecht, M. Skiba, G. Frey, R.K. Chakrabarty, and W.P. Arnott, 2012. Single scattering albedo of fine mineral dust aerosols controlled by iron concentration, Journal of Geophysical Research, 117: D11210, doi:10.1029/2011JD016909.
  12. Noh, Y.M., and K.H. Lee, 2013. Characterization of optical properties of long-range transported Asian dust in Northeast Asia, Korean Journal of Remote Sensing, 29(2): 243-251 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.2.8
  13. Russell, P.B., R.W. Bergstrom, Y. Shinozuka, A.D. Clarke, P.F. DeCarlo, J.L. Jimenez, J.M. Livingston, J. Redemann, O. Dubovik, and A. Strawa, 2010. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmospheric Chemistry and Physics, 10: 1155-1169. https://doi.org/10.5194/acp-10-1155-2010

Cited by

  1. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9