DOI QR코드

DOI QR Code

Combustion Chracteristics of Wood Treated with Bis-(dialkylaminoalkyl) Phosphinic Acids

비스-디알킬아미노알킬 포스핀산으로 처리된 목재의 연소특성

  • Jin, Eui (Department of Fire Protection Engineering, Kangwon National University) ;
  • Chung, Yeong-Jin (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 진의 (강원대학교 소방방재공학과) ;
  • 정영진 (강원대학교 소방방재연구센터)
  • Received : 2013.08.11
  • Accepted : 2013.08.26
  • Published : 2013.08.31

Abstract

This study was performed to test the combustive properties of Pinus rigida plates treated with bis-(dimethylaminomethyl) phosphinic acid (DMDAP), bis-(diethylaminomethyl) phosphinic acid (DEDAP), and bis-(dibuthylaminomethyl) phosphinic acid (DBDAP). Pinus rigida specimens were painted in three times with 15 wt% bis-(dialkylaminoalkyl) phosphinic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). It is supposed that the combustion-retardation properties were improved by the partial due to the treated bis-(dialkylaminoalkyl) phosphinic acids in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the lower total smoke release rate (TSRR) ($16.94{\sim}18.92m^2/m^2$) and lower $CO_{2mean}$ production (1.98~2.09 kg/kg) than those of virgin plate. However the specimens treated with chemicals showed both the higher peak mass loss rate (PMLR) (0.1250~0.1297 g/s) and higher 1st-smoke production rate (SPR) (0.0153~0.0167 g/s) than those of virgin plate. Compared with virgin Pinus rigida plate, the specimens treated with the bis-dialkylamimoalkyl phosphinic acids showed partially low combustive properties.

이 연구에서는 비스-디메틸아미노메틸 포스핀산, 비스-디에틸아미노메틸 포스핀산, 비스-디부틸아미노메틸 포스핀산을 처리한 리기다 소나무의 연소성을 시험하였다. 시험편은 15 wt%의 비스-디알킬아미노알킬 포스핀산 수용액으로 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 그 결과, 비스-디알킬아미노알킬 포스핀산으로 처리한 시험편은 처리하지 않은 시험편에 비하여 그의 연소 억제성을 부분적으로 향상시켰다. 비스-디알킬아미노알킬 포스핀산으로 처리한 시험편은 무처리한 시험편에 비해 총연기방출률($16.94{\sim}18.92m^2/m^2$)과 $CO_{2mean}$ 발생량(1.98~2.09 kg/kg)을 감소시켰다. 그러나 무처리한 시험편에 비해 최대질량감소율($16.94{\sim}18.92m^2/m^2$)과 1차-연기발생속도(0.0153~0.0167 g/s)를 증가시켰다. 따라서 비스-디알킬아미노알킬 포스핀산으로 처리한 시험편은 순수 리기다 소나무 시험편에 비하여 부분적으로 낮은 연소성질을 나타내었다.

Keywords

References

  1. E. Baysal, M. Altinok, M. Colak, S. K. Ozaki and H. Toker, "Fire Resistance of Douglas fir (Psedotsuga menzieesi) Treated with Borates and Natural Extractives", Bioresour. Technol., Vol. 98, No. 5, pp. 1101-1105 (2007). https://doi.org/10.1016/j.biortech.2006.04.023
  2. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Falme Retardant Treated Plyood", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  3. Y. J. Chung, "Comparison of Combustion Proprties of Native Wood Species Used for Fire Pots in Korea", J. Ind. Chem. Eng., Vol. 16, No. 1, pp. 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  4. Article 43 of Building Code, Article 61 of Enforcement Ordinance, "The Internal Finish Material of the Building" (2004).
  5. Article 12 of Firefighting Basic Law, Article 20 of Decree, "The Subject Merchandise Flame and Flame Performance Standard" (2005).
  6. P. W. Lee and J. H. Kwon, "Effects of the Treated Chemicals on Fire Retardancy of Fire retardant Treated Particleboards", Mogjae-Gonghak, Vol. 11, No. 5, pp. 16-22 (1983).
  7. T. S. Mcknight, "The Hygroscopicity of Wood Treated with Fire-retarding Compounds", Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No. 190 (1962).
  8. S. M. Draganov and F. T. Winters, Jr. "An Evaluation of Borates and other Inorganic Salts as Fire Retardants for Wood Products", Fore. Prod. J., Vol. 15, No. 12, pp. 463-467 (1965).
  9. I. S. Goldstein and W. A. Dreher, "A. Non-hygroscopic Fire Retardant Treatment for Wood", Froe. Prod. J., Vol. 11, No. 5, pp. 235-237 (1961).
  10. R. Kozlowski and M. Hewig, "1st Int Conf. Progress in Flame Retardancy and Flammability Testing", Pozman, Poland, Institute of Natural Fibres (1995).
  11. R. Stevens, S. E. Daan, R. Bezemer and A. Kranenbarg, "The Strucure-activity Relationship of Retardant Phosphorus Compounds in Wood", Polym. Degrad. Stab., Vol. 91, No. 4, pp. 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  12. Y. J. Chung, Y. H. Kim and S. B. Kim, "Flame Retardant Properties of Polyurethane Produced by the Addition of Phosphorous Containing Polyurethane Oligomers (II)", J. Ind. Eng. Chem., Vol. 15, No. 6, pp. 888-893 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  13. Y. J. Chung, "Flame Retardancy of Veneers Treated by Ammonium Salts", J. Korean Ind. Eng. Chem., Vol. 18, No. 3, pp. 251-255 (2007).
  14. M. L. Hardy, "Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPOand HBCD", Polym. Degrad. Stab., Vol. 64, No. 3, pp. 545-555 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  15. Y. Tanaka, "Epoxy Resin chemistry and Technology", Marcel Dekker, New York (1988).
  16. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", eds. S. J. Grayson, D. A. Smith, Elsevier Appied Science Publisher, London, UK (1986).
  17. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  18. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, ACS Symposium Series 797 (2001).
  19. Cischem com, "Flame Retardants", Chischem. Com. CO., Ltd. (2009).
  20. Y. J. Chung and E. Jin, "Synthesis of Dialkylaminoalkyl Phosphonic Acid and Bis(dialkylaminoalkyl) Phosphinic Acid Derivatives", Appl. Chem. Eng., Vol. 23, No. 6, pp. 383-387 (2012).
  21. W. T. Simpso, "Drying and Control of Moisture Content and Dimensional Changes", Chap. 12, pp.1-21, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. (1987).
  22. M. Delichatsios, B. Paroz and A. Bhargava, "Flammability Properties for Charring Materials", Fire Safety J., Vol. 38, No. 3, pp. 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  23. M. J. Spearpoint and J. G. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combust. Flame, Vol. 123, No. 3, pp. 308-324 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  24. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  25. M. Risholm-Sundman, M. Lundgren, E. Vestin and P. Herder, Holz als Roh-und Werkstoff, Vol. 56, No. 2, p. 125 (1998).
  26. J. G. Quintiere, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).

Cited by

  1. A Study on the Fire Safety of Seat Covers in Railway Vehicles vol.18, pp.5, 2018, https://doi.org/10.9798/KOSHAM.2018.18.5.171