DOI QR코드

DOI QR Code

Effects of resveratrol on hepatic autophagy in high fat diet-induced obese mice

고지방식이로 유도한 비만 쥐에서 레스베라트롤이 자가포식에 미치는 영향

  • Lee, Hee Jae (Department of Food and Nutrition and Human Ecology Research Institute, Chonnam National University) ;
  • Yang, Soo Jin (Department of Food and Nutrition and Human Ecology Research Institute, Chonnam National University)
  • 이희재 (전남대학교 식품영양학과/생활과학연구소) ;
  • 양수진 (전남대학교 식품영양학과/생활과학연구소)
  • Received : 2013.07.09
  • Accepted : 2013.08.19
  • Published : 2013.08.31

Abstract

Resveratrol (RSV) exerts several beneficial effects on metabolism and metaflammation-related diseases, including diabetes and non-alcoholic fatty liver disease (NAFLD). The purpose of this study is to investigate whether RSV affects pathophysiology of diabetes and NAFLD as well as hepatic autophagy in a rodent model of diet induced obesity (DIO). DIO was induced in a subset of C57BL/6J mice fed a high fat (HF, 45% kcal fat) diet. After six weeks of HF diet treatment, RSV (8 mg/kg/day) was administered via an osmotic pump for a period of four weeks. Therefore, the experimental groups were as follows: 1) lean control (CON), 2) HF diet-induced obese control (HF), and 3) HF_RSV. Body weight and food intake were monitored daily. Fasting glucose, insulin, and adiponectin in serum and lipid profiles in serum and liver were analyzed. In addition, the autophagic process was investigated using transmission electron microscopy (TEM). Body weight and food intake were not affected by RSV treatment. Impaired glucose control accompanied by DIO was recovered with RSV as shown by lower levels of fasting serum glucose and insulin when compared with HF obese controls. In addition, RSV treatment resulted in increased levels of serum adiponectin, however, indices of lipid profile in serum and livers were reduced. Results of TEM analysis showed that a HF diet induced excessive autophagy with the presence of double-membrane autophagosomes, which was ameliorated by RSV. The regulatory effect of RSV on autophagy was confirmed by the altered LC3-II formation, which increased with a HF diet and was decreased by RSV treatment. These results suggest that RSV treatment improves glucose control and lipid profile and these beneficial effects may be mediated by an altered autophagic process.

본 연구에서는 레스베라트롤이 당뇨병 및 비알코올성 지방간 질환 개선 효과를 가지는지를 규명하기 위해 고지방 식이 유도 비만 쥐를 대상으로 레스베라트롤을 4주간 osmotic pump를 사용하여 공급한 후 정상대조군과 고지방식이 제공 비만군과 비교 분석하였고 그 결과는 다음과 같다. 1) 고지방식이 유도 비만 쥐를 대상으로 8 mg/kg/day의 레스베라트롤을 4주간 처리한 결과 체중 변화, 간 조직 중량, 식이 섭취량에 영향을 미치지 않았다. 2) 레스베라트롤은 공복 혈당, 혈청 내 인슐린, 중성지방, 총 콜레스테롤 농도를 낮추었고, 인슐린 작용을 촉진시키는 혈청 아디포넥틴 수준을 개선시켰다. 또한, 고지방식이에 의해 높아진 간 조직 내 중성지방과 총콜레스테롤 농도를 낮추어 레스베라트롤이 지방간 개선 효과를 가질 수 있음을 제안하였다. 3) 자가포식의 표지인자인 autophagosome 생성과 LC3-II 형성 분석 결과, 고지방식이에 의해 과도한 자가포식이 유도되었음을 확인하였다. 레스베라트롤 처리는 이중막을 가지는 autophagosome 생성과 LC3-II 형성을 감소시켜 고지방식이에 의해 유도된 과도한 자가포식을 억제시킴을 보여주었다. 결론적으로 고지방식이와 함께 레스베라트롤을 제공하는 것은 당뇨병과 비알코올성 지방간 질환 관련 대사 인자들을 개선시키고, 이는 간에서의 자가포식 조절과 관련이 있다고 제안한다.

Keywords

References

  1. Rector RS, Thyfault JP, Wei Y, Ibdah JA. Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J Gastroenterol 2008; 14(2): 185-192 https://doi.org/10.3748/wjg.14.185
  2. Torres DM, Harrison SA. Diagnosis and therapy of nonalcoholic steatohepatitis. Gastroenterology 2008; 134(6): 1682-1698 https://doi.org/10.1053/j.gastro.2008.02.077
  3. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011; 146(5): 682-695 https://doi.org/10.1016/j.cell.2011.07.030
  4. Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol 2010; 12(9): 842-846 https://doi.org/10.1038/ncb0910-842
  5. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza- Wadsworth V, White E. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137(6): 1062-1075 https://doi.org/10.1016/j.cell.2009.03.048
  6. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1): 27-42 https://doi.org/10.1016/j.cell.2007.12.018
  7. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12(3): 222-230
  8. Zhang C, He Y, Okutsu M, Ong LC, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z. Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPAR$\gamma$2 degradation. Am J Physiol Endocrinol Metab 2013; 305(4): E530- E539 https://doi.org/10.1152/ajpendo.00640.2012
  9. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458(7242): 1131-1135 https://doi.org/10.1038/nature07976
  10. Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012; 2012: 282041
  11. Papackova Z, Dankova H, Palenickova E, Kazdova L, Cahova M. Effect of short- and long-term high-fat feeding on autophagy flux and lysosomal activity in rat liver. Physiol Res 2012; 61 Suppl 2: S67-S76
  12. Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 2005; 16(8): 449-466 https://doi.org/10.1016/j.jnutbio.2005.01.017
  13. Wu JM, Hsieh TC. Resveratrol: a cardioprotective substance. Ann N Y Acad Sci 2011; 1215: 16-21 https://doi.org/10.1111/j.1749-6632.2010.05854.x
  14. Bertelli AA, Das DK. Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 2009; 54(6): 468-476 https://doi.org/10.1097/FJC.0b013e3181bfaff3
  15. Brasnyo P, Molnar GA, Mohas M, Marko L, Laczy B, Cseh J, Mikolas E, Szijarto IA, Merei A, Halmai R, Meszaros LG, Sumegi B, Wittmann I. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 2011; 106(3): 383-389 https://doi.org/10.1017/S0007114511000316
  16. Park CE, Kim MJ, Lee JH, Min BI, Bae H, Choe W, Kim SS, Ha J. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med 2007; 39(2): 222-229 https://doi.org/10.1038/emm.2007.25
  17. Sharma S, Misra CS, Arumugam S, Roy S, Shah V, Davis JA, Shirumalla RK, Ray A. Antidiabetic activity of resveratrol, a known SIRT1 activator in a genetic model for type-2 diabetes. Phytother Res 2011; 25(1): 67-73 https://doi.org/10.1002/ptr.3221
  18. Kang W, Hong HJ, Guan J, Kim DG, Yang EJ, Koh G, Park D, Han CH, Lee YJ, Lee DH. Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents. Metabolism 2012; 61(3): 424-433 https://doi.org/10.1016/j.metabol.2011.08.003
  19. Szkudelski T, Szkudelska K. Anti-diabetic effects of resveratrol. Ann N Y Acad Sci 2011; 1215: 34-39 https://doi.org/10.1111/j.1749-6632.2010.05844.x
  20. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008; 283(29): 20015-20026 https://doi.org/10.1074/jbc.M802187200
  21. Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, Gadaleta MN, Lezza AM. Age- and calorie restrictionrelated changes in rat brain mitochondrial DNA and TFAM binding. Age (Dordr). Forthcoming 2012
  22. Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S, Schechtman KB, Gu C, Kunz I, Rossi Fanelli F, Patterson BW, Klein S. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 2012; 16(5): 658-664 https://doi.org/10.1016/j.cmet.2012.09.015
  23. Chang CC, Chang CY, Wu YT, Huang JP, Yen TH, Hung LM. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci 2011; 18(1): 47 https://doi.org/10.1186/1423-0127-18-47
  24. Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun 2009; 380(3): 644-649 https://doi.org/10.1016/j.bbrc.2009.01.163
  25. Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol 2010; 221(2): 117-124 https://doi.org/10.1002/path.2694
  26. Kallwitz ER, McLachlan A, Cotler SJ. Role of peroxisome proliferators- activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease. World J Gastroenterol 2008; 14(1): 22-28 https://doi.org/10.3748/wjg.14.22
  27. Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H, Seike M, Yoshimatsu H. Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 2004; 40(1): 177-184
  28. Ng F, Tang BL. Sirtuins' modulation of autophagy. J Cell Physiol. Forthcoming 2013
  29. Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Gal luzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 2011; 192(4): 615-629 https://doi.org/10.1083/jcb.201008167
  30. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol- activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 2011; 19(3): 163-174 https://doi.org/10.1159/000328516

Cited by

  1. 죽엽(竹葉)과 황금(黃芩) 복합물의 항비만 효과 vol.29, pp.6, 2013, https://doi.org/10.6116/kjh.2014.29.6.7.