DOI QR코드

DOI QR Code

대칭용량 달성을 위한 극 퀀텀 채널 코딩

Polar Quantum Channel Coding for Symmetric Capacity Achieving

  • 양재승 (대진대학교 컴퓨터공학과) ;
  • 박주용 (신경대학교 인터넷정보통신학과) ;
  • 이문호 (전북대학교 전자정보공학부)
  • Yang, Jae Seung (Department of Computer Engineering, Daejin University) ;
  • Park, Ju Yong (Department of Internet, Information & Communication, Shyngyeong University) ;
  • Lee, Moon Ho (Division of Electronic Engineering, Chonbuk National University)
  • 투고 : 2012.10.17
  • 발행 : 2013.08.15

초록

본 논문에서는 어떠한 이진 입력 이산 퀀텀채널(quantum channel)이 주어지더라도 대칭 용량을 달성할 수 있는 qubit(quantum bit)를 생성하기 위해, 극(polar) 퀀텀 채널 코딩이라 부르는 퀀텀 채널의 결합과 분리 형태를 제시한다. 현재의 용량은 동등 확률을 갖는 임의의 qubit 입력에 따라서 결정된다. 퀀텀채널의 분극은 대칭채널이 1에 근접하면 rate 1로 아니면 rate 0으로 전송하는 채널을 통해 퀀텀 데이터를 부분적으로 전송하는 퀀텀 오류정정 부호화에 아주 적합하다.

We demonstrate a fashion of quantum channel combining and splitting, called polar quantum channel coding, to generate a quantum bit (qubit) sequence that achieves the symmetric capacity for any given binary input discrete quantum channels. The present capacity is achievable subject to input of arbitrary qubits with equal probability. The polarizing quantum channels can be well-conditioned for quantum error-correction coding, which transmits partially quantum data through some channels at rate one with the symmetric capacity near one but at rate zero through others.

키워드

참고문헌

  1. Shannon, C.E, "A Mathematical Theory of Communication," Bell Syst. Tech. J 27, pp. 379-423, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  2. Nielsen, M., Chuang, I., Quantum Computation and Quantum Information, . Cambridge University Press, Cambridge, 2000.
  3. Deng, F.G., Long, G.L., "Secure Direct Communication with a Quantum One-Time Pad," Phys. Rev. A 69(5), 052319, 2004. https://doi.org/10.1103/PhysRevA.69.052319
  4. Zeng, G., Keitel, C.H., "Arbitrated Quantum-Signature Scheme," Phys. Rev. A 65(4), 042312(1-6), 2002. https://doi.org/10.1103/PhysRevA.65.042312
  5. Zeng, G., Reply to "Comment on 'Arbitrated Quantum-Signature Scheme'," Phys. Rev. A 78(1), 016301(1-5), 2008. https://doi.org/10.1103/PhysRevA.78.016301
  6. Guo, Y., Lee, M.H., Zeng, G., "Quantum Codes Based on Fast Pauli Block Transforms in the Finite Field. Quan," Infor. Proc. 8(4), pp.361-378, 2009. https://doi.org/10.1007/s11128-009-0113-1
  7. Guo, Y., Lee, M.H., "Fast Quantum Codes Based on Pauli Block Jacket Matrices. Quant," Infor. Proc 9(5), pp.663-666, 2010. https://doi.org/10.1007/s11128-009-0160-7
  8. Devetak, I., "The Private Classical Capacity and Quantum Capacity of a Quantum Channel," IEEE Trans. Inf. Theory 51(1), pp.44-55, 2005. https://doi.org/10.1109/TIT.2004.839515
  9. Jiang, L., He, G., Xiong, J., Zeng G.H., "Quantum Anonymous Voting for Continuous Variables," Phys. Rev. A 85(4), 042309(1-6), 2012. https://doi.org/10.1103/PhysRevA.85.042309
  10. Calderbank, A.R., Rains, E.M., Shor, P.W., et al., "Quantum Error Correction and Orthogonal Geometry," Phys. Rev. Lett. 78(3), pp.405-408, 1997. https://doi.org/10.1103/PhysRevLett.78.405
  11. Li, Y., Dumer, I., Pryadko, L.P., "Clustered Error Correction of Codeword-Stabilized Quantum Codes," Phys. Rev. Lett. 104(19), 190501(1-4), 2010. https://doi.org/10.1103/PhysRevLett.104.190501
  12. MacKay, D.J.C., Mitchison, G.J., McFadden, P. L., "Sparse-Graph Codes for Quantum Error Correction," IEEE Trans.Infor. Theory 50(10), pp.2315-2330, 2004. https://doi.org/10.1109/TIT.2004.834737
  13. Aggarwal, V., Calderbank, A.R., "Boolean Functions, Projection Operators, and Quantum Error Correcting Codes," IEEE Trans. Infor. Theory 54(4), pp.1700-1707, 2008. https://doi.org/10.1109/TIT.2008.917720
  14. Ocko, S.A., Chen, X., Zeng, B., et al., "Quantum Codes Give Counterexamples to the Unique Preimage Conjecture of the N-Representability Problem," Phys. Rev. Lett. 106(11), 110501(1-4), 2011. https://doi.org/10.1103/PhysRevLett.106.110501
  15. Chen, J., Ji, Z., Wei, Z., et al., "Correlations in Excited States of Local Hamiltonians," Phys. Rev. A 85(4), 040303(1-4), 2012. https://doi.org/10.1103/PhysRevA.85.040303
  16. Grassl, M., Shor, P., Smith, G., et al., "Generalized Concatenated Quantum Codes," Phys. Rev. A 79(5), 050306(1-4), 2009. https://doi.org/10.1103/PhysRevA.79.050306
  17. Bombin, H., Martin-Delgado, M.A., "Topological Quantum Distillation," Phys. Rev. Lett. 97(18), 180501(1-4), 2006. https://doi.org/10.1103/PhysRevLett.97.180501
  18. Viyuela, O., Rivas, A., Martin-Delgado, M.A, "Generalized Toric Codes Coupled to Thermal Baths," New J. Phys. 14, pp.33-44, 2012.
  19. Wilde, M.M., Guha, S., Tan, S.H., et al., "Explicit Capacity-Achieving Receivers for Optical Communication and Quantum Reading," ISIT 2012, Boston, MA, USA, 2012.
  20. Arikan, E., "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Trans. Infor. Theory 55(7), pp.3051-3073, 2009. https://doi.org/10.1109/TIT.2009.2021379
  21. Bhattacharyya, A., "A Measure of Divergence Between Two Statistical Populations Defined by Their Probability Distributions," Bull. Calcutta Math Soc. 35, pp.99-110, 1943.
  22. Mark M. Wilde, Saikat Guha, "Polar Codes for Classical-Quantum Channels," IEEE Trans. on Information Theory, vol. 59, pp. 1175-1187, Feb. 2013. https://doi.org/10.1109/TIT.2012.2218792
  23. H. Mahdavifar, M. El-Khamy, J. Lee, I. Kang "On the Construction and Decoding of Concatenated Polar Codes" IEEE ISIT 2013, IEEE Int. Symposium on Information Theory, pp.73, Turkey, 2013. 7.7-7.12.
  24. M. H. Lee, Jacket Matrices: Construction and Its Applications for Fast Cooperative Wireless signal Processing, LAP LAMBERT, Germany, 2012.