DOI QR코드

DOI QR Code

Requirement Analysis of Propulsion System for Active Anti-Ship Missile Decoy

능동형 대함 유도탄 기만기의 추진 시스템 요구 조건 분석

  • Moon, Yongjun (Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kwon, Sejin (Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2012.11.28
  • Accepted : 2013.03.12
  • Published : 2013.08.01

Abstract

An active anti-ship missile decoy system was designed conceptually to analyze propulsion system requirements and feasibility to use a liquid bi-propellant rocket engine. Overall mass, size, and shape were assumed referring to specifications of Nulka which was developed by US and Australia in 1990s. The propulsion system was assumed to be a 1,000 N-class $H_2O_2$/kerosene rocket engine with a pressurized feed system. A three-degree-of-freedom optimal trajectory was calculated based on the assumptions, and mass budget was designed from the calculation results. It was found that the requirements for the propulsion system is that it shall be operated more than 100 sec; it shall be re-ignitable; it shall have a throttle capability of a range from 35% to 100% when the maximum thrust at sea level is 1,000 N.

능동형 대함 유도탄 기만기의 추진 시스템 요구 조건 및 저장성 액체 이원추진제 로켓 엔진의 적용 가능성을 파악하기 위해 개념 설계를 수행하였다. 이미 미국과 오스트레일리아에서 공동 개발하여 운용 중인 Nulka의 제원을 통해 시스템의 기본적인 무게, 크기 등을 가정하였고, 1,000 N 급 과산화수소/케로신 로켓 엔진과 가압식 추진제 공급 방식으로 추진 시스템을 가정하였다. 이를 바탕으로 최적 궤적을 설계하였고 그 결과를 통해 하부 시스템들의 무게 분포를 예측하고 실현 가능성을 확인하였다. 그 결과, 100초 이상의 운용 시간, 엔진 재점화, 그리고 최대 지상 추력 1,000 N의 경우 최소 35%까지의 추력 제어 성능이 추진 시스템의 요구 조건으로 도출 되었다.

Keywords

References

  1. Kim, D., Yun J., Ryoo C.K., "Defense Strategy against Multiple Anti-Ship Missiles using Anti-Air Missiles," Journal of the KSAS, Vol. 39, No. 4, pp. 354-361, 2011. https://doi.org/10.5139/JKSAS.2011.39.4.354
  2. Young, N. and Stacey, B.A., "Naval Air Defence: Softkill, Hardkill, and Platform Signature Coordination," Journal of Battlefield Technology, Vol. 10, No. 1, pp. 9-12, March 2007.
  3. "MK-53 Nulka Decoy Launching System," retrieved October 21 2012 from http://www.fas.org/man/dod-101/sys/ship/weaps/mk-53.htm.
  4. Friedman, N., "The Naval Institute Guide to World Naval Weapon Systems," 5th ed., Naval Institute Press, p. 337, 2006.
  5. "MK 234 Winnin Nulka Chaff," retrieved October 21 2012 from http://www.harpoondatabases.com/weapon.aspx?DB=5&ID=997.
  6. Blake, W.B., "Missile DATCOM User's Manual - 1997 FORTRAN 90 Revision," Air Force Research Laboratory, AFRL-VA-WP-TR-1998-3009, Febrary 1998.
  7. Chemical Equilibrium with Applications, CEAgui, NASA Glenn Research Center, Cleveland, Ohio, USA, 7 May, 2004.
  8. Kalt, S. and Badal, D.L., "Conical Rocket Nozzle Performance Under Flow-Separation Conditions," Journal of Spacecraft and Rockets, Vol. 2, No. 3, pp. 447-449, May-June 1965. https://doi.org/10.2514/3.28200
  9. Jo, S., "Design and Validation of Bipropellant Rocket Engine with Storable Propellants," Ph.D. Dissertation, Division of Aerospace Engineering, School of Mechanical Aerospace & Systems Engineering, KAIST, 2012.
  10. General Pseudospectral Optimal Control Software, GPOPS 5.1, Gainesville, FL, USA, October 2012.