DOI QR코드

DOI QR Code

Field Weakening Control of a PM Electric Variable Transmission for HEV

  • Received : 2013.02.14
  • Accepted : 2013.05.07
  • Published : 2013.09.01

Abstract

This paper presents the control of a Permanent Magnet Electric Variable Transmission (PM-EVT) for Hybrid Electric Vehicles (HEVs). Consisting of two electric machines, the EVT realizes the power split function in an electromagnetic way rather than in a mechanical way. A specific PM-EVT has been designed for Toyota Prius II. The control scheme of the entire vehicle is deduced using the Energetic Macroscopic Representation methodology. The energy management strategy yields local control references. A specific attention is paid for the field weakening for wide speed range. Simulation results are provided to illustrate the EVT modeling and control.

Keywords

References

  1. C.C.Chan. The state of the art of electric, hybrid and fuel cell vehicles. Proceedings of the IEEE, Vol.95, No.4, April 2007. 704-718. https://doi.org/10.1109/JPROC.2007.892489
  2. M. Ehsani, Y. Gao, S. E. Gay, A. Emadi. Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design. Boca Raton, FL: CRC, Dec. 2004.
  3. A. Emadi, K. Rajashekara, S.S. Williamson, S. M. Lukic. Topological overview of hybrid electric and fuel cell vehicular power systems architectures and configurations. IEEE trans. on Vehicular Technology, Vol. 54, No.3, pp. 763-770, May 2005. https://doi.org/10.1109/TVT.2005.847445
  4. J. M. Miller. Hybrid electric vehicle propulsion system architectures of the e-CVT type. IEEE trans. on Power Electronics, Vol. 21, No. 3, May 2006, pp. 756-767. https://doi.org/10.1109/TPEL.2006.872372
  5. B. Mashadi, S.A.M. Emadi. Dual-mode power-split transmission for hybrid electric vehicles. IEEE trans. on Vehicular Technology, Vol. 59, No.7, Sep. 2010, pp.3223-3232. https://doi.org/10.1109/TVT.2010.2049870
  6. S. Eriksson, S. Sadarangani, "A four-quadrant HEV drive system", IEEE-VTC, 2002-Fall.
  7. M. J. Hoeijmakers, J. A. Ferreira. The electric variable transmission. IEEE trans. on Industry Applications, Vol. 42, No. 4, pp. 1092-1093, July/August 2006. https://doi.org/10.1109/TIA.2006.877736
  8. Y. Cheng, S. Cui, L. Song, C.C. Chan, The study of the operation modes and control strategies of an advanced electromechanical converter for automobiles. IEEE trans. on Magnetics, Vol. 43, No. 1, January 2007, pp.430-433. https://doi.org/10.1109/TMAG.2006.887649
  9. E. Nordlund, C. Sadarangani. The four quadrant energy transducer. Proc. Rec. 37th Conf. IAS Annu. Meeting, 2002, pp. 390-391.
  10. L. Xu. A new breed of electric machines-basic analysis and applications of dual mechanical port electric machines. Int. Conf. Electr. Mach. Syst., 2005, pp. 24-29.
  11. Z.Q. Zhu. Electrical machines and drives for electric, hybrid and fuel cell vehicles. Proceedings of the IEEE, Vol. 95, No.4, April 2007. pp. 746-765. https://doi.org/10.1109/JPROC.2006.892482
  12. K.T. Chau, C.C. Chan, C. Liu. Overview of permanentmagnet brushless drives for electric and hybrid electric vehicles. IEEE trans. on Industrial Electronics, Vol. 55, No. 6, pp. 2246-2257, 2008.
  13. Y. Cheng, C. Espanet, R. Trigui, A. Bouscayrol, S. Cui. Different structures of permanent-magnet electric variable transmissions for hybrid electric vehicles. Proc. EVS25, 2010, pp. 1-5.
  14. P. Zheng, R. Liu, Q. Wu, J. Zhao, Z. Yao. Magnetic coupling analysis of four-quadrant transducer used for hybrid electric vehicles. IEEE trans. on Magnetics,Vol.43, No. 6, 2007, pp. 2597-2599 https://doi.org/10.1109/TMAG.2007.892861
  15. J.T.B.A. Kessels, D.L. Foster, P.P.J. van den Bosch. Integrated powertrain control for hybrid electric vehicles with electric variable transmission. Proc. IEEE VPPC2009, September 2009, pp. 376-381.
  16. M. Aubertin, A. Tounzi, Y. Le Menach. Study of an electromagnetic gearbox involving two permanent magnet synchronous machines using 3-D-FEM. IEEE trans. on Magnetics, Vol. 44, No. 11, November 2008, pp. 4381-4384. https://doi.org/10.1109/TMAG.2008.2001513
  17. R. Liu, P. Zheng, H. Zhao, C. Sadarangani. Investigation of a compound-structure permanent-magnet synchronous machine used for HEVs. Proc. IEEE VPPC2008, September 2008.
  18. W.L. Soong, T.J.E. Miller, Field-weakening performance of brushless synchronous AC motor drives. IEE Proc. Elect. Power Appl., 1994, pp. 331-340.
  19. T. M. Jahns, G. B. Kliman, T. W. Neumann, Interior permanent-magnet synchronous motors for adjustablespeed drives. IEEE trans. on Industry Applications, Vol. IA-22, No. 4, pp. 738-747, July/August 1996.
  20. D. Lu, N. C. Kar. A review of flux-weakening control in permanent magnet synchronous machines. Proc. IEEE VPPC2010, September 2010.
  21. P. Zheng, R. Liu, W. Fan, J. Han, J. Li, H. Kou. Research on the control of a radial-radial flux compound-structure permanent-magnet synchronous machine used for HEVs. Electromagnetic Launch Technology, 2008.
  22. Y. Cheng, R. Trigui, C. Espanet, A. Bouscayrol, S. Cui. Specifications and design of a PM electric variable transmission for Toyota Prius II. IEEE trans. on Vehicular Technology, Vol. 60, No. 9, pp.4106-4114, November 2011. https://doi.org/10.1109/TVT.2011.2155106
  23. Y. Cheng, C. Espanet, R. Trigui, A. Bouscayrol, S. Cui, Design of a Permanent Magnet Electric Variable Transmission for HEV Applications , IEEE-VPPC'10, Lille (France), September 2010.
  24. Y. Cheng, A. Bouscayrol, R. Trigui, C. Espanet, Inversion-based Control of a PM Electric Variable Transmission. IEEE-VPPC'11, Chicago (USA), September 2011.
  25. A. Bouscayrol, B. Davat, B. de Fornel, B. Francois, J. P. Hautier, F. Meibody-Tabar, M. Pietrzak-David, "Multimachine Multiconverter System: application for electromechanical drives", European Physics Journal - Applied Physics, Vol. 10, No. 2, May 2000, pp. 131-14. https://doi.org/10.1051/epjap:2000124
  26. EMR website, http://emr.univ-lille1.fr/
  27. K. Chen, A. Bouscayrol, A. Berthon, P. Delarue, D. Hissel, R. Trigui. Global modeling of different vehicles-using energetic macroscopic representation to focus on system function and system energy properties. IEEE Vehicular Technology Magazine, Vol. 4, No. 2, June 2009, pp. 80-89. https://doi.org/10.1109/MVT.2009.932540
  28. W. Lhomme, R. Trigui, P. Delarue, B. Jeanneret, A. Bouscayrol, F. Badin. Switched causal modeling of transmission with clutch in hybrid electric vehicle. IEEE Transactions on Vehicular Technology, Vol. 57, No. 4, pp.2081-2088, July 2008. https://doi.org/10.1109/TVT.2007.912333
  29. L. Boulon, D. Hissel, A. Bouscayrol, O. Pape, M-C Pera, Simulation model of a Military HEV with a Highly Redundant Architecture, IEEE trans. on Vehicular Technology, Vol. 59, No. 6, July 2010, pp. 2654-2663. https://doi.org/10.1109/TVT.2010.2045522
  30. S. Sasaki. Toyota's Newly Developed Hybrid Power-train. ISPSD'98, June 1998, Kyoto (Japon), pp. 17-22.
  31. J. Lin, H. Peng. Modeling and control of a powersplit hybrid vehicle. IEEE trans. on Control System Technology, Vol. 16, No. 6, pp. 1242-1251, November 2008. https://doi.org/10.1109/TCST.2008.919447
  32. E. Vinot, J. Scordia, R. Trigui, B. Jeanneret, F. Badin (2008) Model simulation, validation and case study of the 2004 THS of Toyota Prius. International Journal of Vehicle System Modelling and testing. Vol. 3, No. 3, 2008. pp. 139-167. https://doi.org/10.1504/IJVSMT.2008.023835
  33. L. Xu, Y. Zhang, X. Wen, "Multi-operational modes and control strategies of dual-mechanical-port machines for hybrid electriic vehicles", IEEE trans. on Industry Applications, Vol. 45, No. 2, pp. 747-755, March/april 2009. https://doi.org/10.1109/TIA.2009.2013575
  34. J. T. B. A. Kessels, P. P. J. Van der Bosch, "Integrated powertrain control for Hybrid Electric Vehicles using Electric Variable Transmission," IEEE-VPPC'09, Dearborn (USA), September 2009.
  35. P. Delarue, A. Bouscayrol, E. Semail, Generic control method of multi-leg voltage-source-converters for fast practical implementation", IEEE trans. on Power Electronics, Vol. 18, No. 2, pp. 517-526, March 2003.
  36. A. Bouscayrol, P. Delarue, X. Guillaud, "Power strategies for Maximum Control Structure of a wind energy conversion system with a synchronous machine", Renewable Energy, Vol. 30, May 2005, pp. 2273-2288. https://doi.org/10.1016/j.renene.2005.03.005
  37. J. Wai, T.M. Jahns. A new control technique for achieving wide constant power speed operation with an interior PM alternator machine. Conf. Rec.36th IAS Annu. Meeting, 2001, pp. 807-814.
  38. C.T. Pan, J.H. Liaw. A robust field-weakening control strategy for surface-mounted permanent-magnet motor drives. IEEE trans. on Energy. Convers., Vol. 20, No. 4, pp. 701-709, Dec. 2005. https://doi.org/10.1109/TEC.2005.861039
  39. S.D. Sudhoff, K.A. Corzine, H. J. Hegner, "A fluxweakening strategy for current-regulated surfacemounted permanent-magnet machine drives", IEEE trans. on Energy Conversion, Vol. 10, No. 3, pp.431-437, September 1995. https://doi.org/10.1109/60.464865
  40. F. R. Salmasi, "Control strategies for Hybrid Electric Vehicles: evolution, classification, comparison and future trends", IEEE trans. on Vehicular Technology, September 2007, Vol. 56, No. 3, pp. 2393-2404. https://doi.org/10.1109/TVT.2007.899933

Cited by

  1. Interior Permanent Magnet Synchronous Motor Linear Field-Weakening Control vol.31, pp.1, 2016, https://doi.org/10.1109/TEC.2015.2478917
  2. Decoupled Speed and Torque Control of IPMSM Drives Using a Novel Load Torque Estimator vol.17, pp.3, 2017, https://doi.org/10.4316/AECE.2017.03003