References
- T. Orfanogianni, R. Bacher, "Steady-State optimization in power systems with series FACTS devices," IEEE Trans. Power Syst., Vol. 18, No. 1, 2003, pp. 19-26. https://doi.org/10.1109/TPWRS.2002.807110
- A. A. Athamneh, W. J. Lee, "Benefits of FACTS devices for power exchange among Jordanian Interconnection with other Countries," IEEE/PES General Meeting, June 2006.
- S. Gerbex, R. Cherkaoui, A. J. Germond, "Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms," IEEE Trans. Power Syst., Vol. 16, No. 3, 2001, pp. 537-544. https://doi.org/10.1109/59.932292
- A. R. Messina, M. A. Pe'rez, E. Herna'ndez, "Coordinated application of FACTS devices to enhance steady-state voltage stability," Int. J Electr. Power Energy Syst., Vol. 19, No. 2, 2003, pp. 259-267.
- W. Shao, V. Vijay, "LP-based OPF for corrective FACTS control to relieve overloads and voltage violations," IEEE Trans. Power Syst., Vol. 21, No. 4, 2006, pp. 1832-1839. https://doi.org/10.1109/TPWRS.2006.881127
- A. Yousefi, et al., "Congestion management using demand response and FACTS devices," Int. J Electr. Power Energy Syst., Vol. 37, No.1, 2012, pp. 78-85. https://doi.org/10.1016/j.ijepes.2011.12.008
- Y. C. Chang, "Fitness sharing particle swarm optimization approach to FACTS installation for transmission system loadability enhancement," J Electr. Eng. Technol., Vol. 8, No. 1, 2013, pp. 31-39. https://doi.org/10.5370/JEET.2013.8.1.031
- E. Ghahremani, I. Kamwa, "Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface," IEEE Trans. Power Syst., Early version, 2012.
- K. Y. Lee, M. Farsangi, H. Nezamabadi-pour, "Hybrid of analytical and heuristic techniques for FACTS devices in transmission systems," IEEE/PES General Meeting, June 2007, pp. 1-8.
- S. N. Singh, A. K. David, "Optimal location of FACTS devices for congestion management," Electric Power Systems Research, 2001, pp. 71-79.
- S. H. Song, J. U. Limb, Seung-Il Moon, "Installation and operation of FACTS devices for enhancing steady-state security," Electric Power Systems Research, 2004, pp. 7-15.
- L. J. Cai, I. Erlich, G. Stamtsis, "Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms," IEEE PES Power Systems Conference and Exposition, pp. 201-207.
- T. S. Chung, Y. Z. Li, "A hybrid GA approach for OPF with consideration of FACTS devices," IEEE Power Engineering Review, Feb. 2001, pp. 47-50.
- D. Mondal, A. Chakrabarti, A. Sengupta, "Optimal placement and parameter setting of SVC and TCSC using PSO to mitigate small signal stability problem," Int. J Electr. Power Energy Syst., Vol. 42, No. 1, 2012, pp. 334-340. https://doi.org/10.1016/j.ijepes.2012.04.017
- Y. Matsuo, A. Yokoyama, "Optimization of installation of FACTS devices in power system planning by both tabu search and nonlinear programming methods," Proc. 1999 Intelligent System Application to Power System Conference, pp. 250-254.
- S. N. Singh, A. K. David, "A new approach for placement of FACTS devices in open power markets," IEEE Power Engineering Review, Vol. 21, No. 9, 2001, pp. 58-60.
- P. Bhasaputra, W. Ongsakul, "Optimal power flow with multi-type of FACTS devices by hybrid TS/SA approach," IEEE Proc. International Conference on Industrial Technology, Vol. 1, 2002, pp. 285-290.
- H. A. Abdelsalam, et. al., "Optimal location of the unified power flow controller in electrical power system," IEEE Proc. Large Engineering Systems Conference on Power Engineering, July 2004, pp. 41-46.
- S. A. Taher, M. K. Amooshahi, "New approach for optimal UPFC placement using hybrid immune algorithm in electric power systems," Int. J Electr. Power Energy Syst., Vol. 43, No. 1, 2012, pp. 899-909. https://doi.org/10.1016/j.ijepes.2012.05.064
- S. K. Sundar, H. M. Ravikumar, "Selection of TCSC location for secured optimal power flow under normal and network contingencies," Int. J Electr. Power Energy Syst., Vol. 34, No. 1, 2012, pp. 29-37. https://doi.org/10.1016/j.ijepes.2011.09.002
- A. A. Alabduljabbara, J. V. Milanovi'c, "Assessment of techno-economic contribution of FACTS devices to power system operation," Electric Power Systems Research, 2010, 1247-1255.
- E. N. Azadani, et. al., "Optimal placement of multiple STATCOM," The 12th International Middle-East Power System Conference, March 2008, pp.523-528.
- D. Povh, "Modeling of FACTS in power system studies," IEEE/PES Winter Meeting, Vol. 2, Jan. 2000, pp. 1435-1439.
- H. R. Baghaee, M. Annati, B. Vahidi, "Improvement of voltage stability and reduce power system losses by optimal GA-based allocation of multi-type FACTS devices," Int. Conf. Optimization of Electrical and Electronic Equipment, May 2008, pp. 209-214.
- A. R. Phadke, M. Fozdar, K. R. Niazi, "A new multiobjective fuzzy-GA formulation for optimal placement and sizing of shunt FACTS controller," Int. J Electr. Power Energy Syst., Vol. 40, No. 1, 2012, pp. 46-53. https://doi.org/10.1016/j.ijepes.2012.02.004
- A. S. Yome, N. Mithulananthan, K. Y. Lee, "Static voltage stability margin enhancement using STATCOM, TCSC and SSSC," 2005 IEEE/PES Transmission and Distribution Conference & Exhibition, pp. 1-6.
- Z. Lu, M. S. Li, L. Jiang, "Optimal allocation of FACTS devices with multiple objectives achieved by bacterial swarming algorithm," IEEE/PES General Meeting, Conversion and Delivery of Electrical Energy in the 21st Century, July 2008, pp. 1-7.
- A. Lai'fa, M. Boudour, "FACTS allocation for power systems voltage stability enhancement using MOPSO," Int. Multi-Conference on Systems, Signals and Devices, IEEE SSD 2008, July 2008, pp. 1-6.
- D. Radu, Y. Besanger, "A multi-objective genetic algorithm approach to optimal allocation of multitype FACTS devices for power systems security," IEEE/PES General Meeting, June 2006.
- M. Saravanan, et. al., "Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability," Electric Power Systems Research, 2007, pp. 276-283.
- V. Ajjarapu, C. Christy, "The continuation power flow: a tool for steady state voltages stability analysis," IEEE Trans. Power Syst., Vol. 7, No. 1, 1992, pp. 416-423.
- H. D. Chiang, et. al., "CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations," IEEE Trans. Power Syst., Vol. 10, No. 2, 1995, pp. 623-628. https://doi.org/10.1109/59.387897
- F. V. D. Bergh, A. P. Engelbrecht, "A new locally convergent particle swarm optimizer," Proc. of IEEE Conference on Systems, Man and Cybernetics (Hammamet. Tunisia), Vol. 3, 2003.
- A. J. Wood, B. F. Wollenberg, "Power Generation, Operation and Control," John Wiley, New York, 1996.
- A. A. A. Esmin, G. L. Torres, A. C. Z. Souza, "A hybrid particle swarm optimization applied to loss power minimization," IEEE Trans. Power Syst., Vol. 20, No. 2, 2005, pp. 859-866. https://doi.org/10.1109/TPWRS.2005.846049
- A. C. Z. de Souza, C. A. Canizares, V. H. Quintana, "New techniques to speed up voltage collapse computations using tangent vectors," IEEE Trans. Power Syst., Vol. 12, No. 3, 1997, pp. 1380-1387. https://doi.org/10.1109/59.630485
- J. Kennedy, R. Eberhart, "Particle swarm optimization," Proc. of 1995 IEEE Int. Conf. on Neural Networks (ICNN'95), Vol. IV, pp. 1942-1948.
Cited by
- A Hybrid Approach for Power System Security Enhancement via Optimal Installation of Flexible AC Transmission System (FACTS) Devices vol.10, pp.9, 2017, https://doi.org/10.3390/en10091305