DOI QR코드

DOI QR Code

Genetic Variation and Phylogenetic Relationships of Indian Buffaloes of Uttar Pradesh

  • Joshi, Jyoti (Department of Animal Genetics, National Bureau of Animal Genetic Resources) ;
  • Salar, R.K. (Department of Biotechnology, Chaudhary Devi Lal University) ;
  • Banerjee, Priyanka (Department of Animal Genetics, National Bureau of Animal Genetic Resources) ;
  • Upasna, S. (Department of Animal Genetics, National Bureau of Animal Genetic Resources) ;
  • Tantia, M.S. (Department of Animal Genetics, National Bureau of Animal Genetic Resources) ;
  • Vijh, R.K. (Department of Animal Genetics, National Bureau of Animal Genetic Resources)
  • Received : 2012.11.30
  • Accepted : 2013.03.05
  • Published : 2013.09.01

Abstract

India possesses a total buffalo population of 105 million out of which 26.1% inhabit Uttar Pradesh. The buffalo of Uttar Pradesh are described as nondescript or local buffaloes. Currently, there is no report about the genetic diversity, phylogenetic relationship and matrilineal genetic structure of these buffaloes. To determine the origin and genetic diversity of UP buffaloes, we sequenced and analysed the mitochondrial DNA D-loop sequences in 259 samples from entire Uttar Pradesh. One hundred nine haplotypes were identified in UP buffaloes that were defined by 96 polymorphic sites. We implemented neutrality tests to assess signatures of recent historical demographic events like Tajima's D test and Fu's Fs test. The phylogenetic studies revealed that there was no geographic differentiation and UP buffaloes had a single maternal lineage while buffaloes of Eastern UP were distinctive from rest of the UP buffaloes.

Keywords

References

  1. Avise, J. C. 2000. Phylogeography: the history and formation of species. Cambridge: Harvard University Press. p. 447.
  2. Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb, and N. C. Saunders. 1987a. Intraspecific Phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst. 18:489-522.
  3. Bandelt, H. J., P. Forster, and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16:37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  4. Bradley, D. G., R. T. Loftus, P. Cunningham, and D. E. Machugh. 1998. Genetics and domestic cattle origins. Evol. Anthropol. 6:79-86. https://doi.org/10.1002/(SICI)1520-6505(1998)6:3<79::AID-EVAN2>3.0.CO;2-R
  5. Cann, R. L., W. M. Brown, and A. C. Wilson. 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106:479-499.
  6. Excoffier, L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-islandmodel. Mol. Ecol. 13:853-864. https://doi.org/10.1046/j.1365-294X.2003.02004.x
  7. Excoffier, L., and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  8. Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479-491.
  9. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925.
  10. Fu, Y. X., and W. H. Li. 1993. Statistical tests of neutrality of mutations. Genetics 133:693-709.
  11. Hall, T. 1999. Bioedit: A biological sequence alignment editor and analysis program for windows 95/98/nt. Nucleic Acids Symp. Ser. 41:95-98.
  12. Harpending, H. C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66:591-600.
  13. Harpending, H. C., S. T. Sherry, A. R. Rogers, and M. Stoneking. 1993. Genetic structure of ancient human populations. Curr. Anthropol. 34:483-496. https://doi.org/10.1086/204195
  14. Harrison, R. G. 1989. Animal mitochondrial DNA as a genetic marker in population biology and evolutionary biology. Trends Ecol. Evol. 4:6-11. https://doi.org/10.1016/0169-5347(89)90006-2
  15. Kierstein, G., M. Vallinoto, A. Silva, M. P. Schneider, L. Iannuzzi, and B. Brenig. 2004. Analysis of mitochondrial d-loop region casts new light on domestic water buffalo (Bubalus Bubalis) phylogeny. Mol. Phylogenet. Evol. 30:308-324. https://doi.org/10.1016/S1055-7903(03)00221-5
  16. Kumar, S., M. Nagarajan, J. S. Sandhu, N. Kumar, and V. Behl. 2007a. Phylogeography and domestication of Indian River buffalo. BMC Evol. Biol. 7:186. https://doi.org/10.1186/1471-2148-7-186
  17. Kumar, S., M. Nagarajan, J. S. Sandhu, N. Kumar, V. Behl, and G. Nishanth. 2007b. Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim. Genet. 38:227-232. https://doi.org/10.1111/j.1365-2052.2007.01602.x
  18. Lau, C. H., R. D. Drinkwater, K. Yusoff, S. G. Tan, D. J. Hetzel, and J. S. Barker. 1998. Genetic diversity of asian water buffalo (Bubalus Bubalis): Mitochondrial DNA D-Loop and cytochrome b sequence variation. Anim. Genet. 29:253-264. https://doi.org/10.1046/j.1365-2052.1998.00309.x
  19. Lee, Y. J., M. S. A. Bhuiyan, H. J. Chung, W. Y. Jung, K. D. Choi, B. G. Jang, W. K. Paek, J. T. Jeon, C. S. Park, and J. H. Lee. 2007. Mitochondrial DNA diversity of Korean Ogol chicken. Asian-Aust. J. Anim. Sci. 20:477-481. https://doi.org/10.5713/ajas.2007.477
  20. Lei, C. Z., W. Zhang, H. Chen, F. Lu, Q. L. Ge, R.Y. Liu, R. H. Dang, Y. Y. Yao, L.B. Yao, Z. F. Lu, and Z. L. Zhao. 2007. Two maternal lineages revealed by mitochondrial DNA Dloop sequences in Chinese native water buffaloes (Bubalus Bubalis). Asian-Aust. J. Anim. Sci. 20:471-476. https://doi.org/10.5713/ajas.2007.471
  21. Lei, C. Z., W. Zhang, H. Chen, F. Lu, R. Y. Liu, X. Y. Yang, H. C. Zhang, Z. G. Liu, L. B. Yao, Z. F. Lu, and Z. L. Zhao. 2007. Independent maternal origin of Chinese swamp buffalo (Bubalus Bubalis). Anim. Genet. 38:97-102. https://doi.org/10.1111/j.1365-2052.2007.01567.x
  22. Livestock Census. 2007. Department of animal husbandary and dairying, Govt. of India, New Delhi, India.
  23. Malau-Aduli, A. E. O., A. Nishimura-Abe, T. Niibayashi, Y. Yasuda, T. Kojima, S. Abe, K. Oshima, K. Hasegawa, and M. Komatsu. 2004. Mitochondrial DNA polymorphism, maternal lineage and correlations with postnatal growth of Japanese black beef cattle to yearling age. Asian-Aust. J. Anim. Sci. 17:1484-1490. https://doi.org/10.5713/ajas.2004.1484
  24. Nei, M. 1987. Molecular evolutionary genetics. Columbia university press. New York.
  25. Odahara, S., H. J. Chung, S. H. Choi, S. L. Yu, S. Sasazaki, H. Mannen, C. S. Park, and J. H. Lee. 2006. Mitochondrial DNA diversity of Korean native goats. Asian-Aust. J. Anim. Sci. 19:482-485. https://doi.org/10.5713/ajas.2006.482
  26. Okello, J. B. A., S. Nyakana, C. Masembe, H. R. Siegismund, and P. Arctander. 2005. Mitochondrial DNA variation of the common hippopotamus: evidence for a recent population expansion. Heredity 95:206-215. https://doi.org/10.1038/sj.hdy.6800711
  27. Pichler, F. B. 2002. Genetic assessment of population boundaries and gene exchange in Hector's dolphin. DOC Science Internal Series 44.
  28. Ray, N., M. Currat, and L. Excoffier. 2003. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20:76-86. https://doi.org/10.1093/molbev/msg009
  29. Rogers, A. R. 1995. Genetic evidence for a Pleistocene population expansion. Evolution 49:608-615. https://doi.org/10.2307/2410314
  30. Rogers, A. R., and H. Harpending. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9:552-569.
  31. Rozas, J., J. C. Sanchez-Delbarrio, X. Messeguer, and R. Rozas. 2003. Dnasp, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496-2497. https://doi.org/10.1093/bioinformatics/btg359
  32. Ruiz-Pesini, E., D. Mishmar, M. Brandon, V. Procaccio, and D. C. Wallace. 2004. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223-226. https://doi.org/10.1126/science.1088434
  33. Schneider, S., and L. Excoffier. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079-1089.
  34. Slatkin, M., and R. R. Hudson. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555-562.
  35. Su, B., Y. Fu, Y. Wang, L. Jin, and R. Chakraborty. 2001. Genetic diversity and population history in Red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations. Mol. Bio. Evol. 18:1070-1076. https://doi.org/10.1093/oxfordjournals.molbev.a003878
  36. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.
  37. Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Bio. Evol. 10:512- 526.
  38. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA 5.10: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  39. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  40. Troy, C. S., D. E. Machugh, J. F. Bailey, D. A. Magee, R. T. Loftus, P. Cunningham, A. T. Chamberlain, B. C. Sykes, and D. G. Bradley. 2001. Genetic evidence for near-eastern origins of european cattle. Nature 410:1088-1091. https://doi.org/10.1038/35074088
  41. Upasna, S., P. Banerjee, J. Joshi, and R. K. Vijh. 2011. Bayesian and multivariate analysis of buffaloes of Indo-Gangetic plains for revealing cryptic spatial patterns of genetic variability. Indian J. Anim. Sci. 81:1039-1043.
  42. Wright, S. 1951. The genetic structure of populations. Ann. Eugen. 15:323-354.

Cited by

  1. Genetic diversity, phylogeographic structure and effect of selection at the mitochondrial hypervariable region of Nigerian chicken populations vol.96, pp.6, 2017, https://doi.org/10.1007/s12041-017-0860-1
  2. pp.10527613, 2018, https://doi.org/10.1002/aqc.2922
  3. Assessment of Genetic Variability and Structuring of Riverine Buffalo Population (Bubalus bubalis) of Indo-Gangetic Basin vol.26, pp.2, 2013, https://doi.org/10.1080/10495398.2014.955613