DOI QR코드

DOI QR Code

Data Analytics in Education : Current and Future Directions

빅데이터를 활용한 맞춤형 교육 서비스 활성화 방안연구

  • Kwon, Young Ok (Division of Business Administration, Sookmyung Women's University)
  • Received : 2013.06.17
  • Accepted : 2013.06.19
  • Published : 2013.06.30

Abstract

Massive increases in data available to an organization are creating a new opportunity for competitive advantage. In this era of big data, developing analytics capabilities, therefore, becomes critical to take advantage of internal and external data and gain insights for data-driven decision making. However, the use of data in education is in its infancy, in comparison with business and government, and the potential for data analytics to impact education services is growing. In this paper, I survey how universities are currently using education data to improve students' performance and administrative efficiency, and propose new ways of extending the current use. In addition, with the so-called data scientist shortage, universities should be able to train professionals with data analytics skills. This paper discusses which skills are valuable to data scientists and introduces various training and certification programs offered by universities and industry. I finally conclude the paper by exploring new curriculums where students, by themselves, can learn how to find and use relevant data even in any courses.

데이터의 급속한 증가로 데이터를 활용한 새로운 가치 창출은 기업뿐 아니라 국가 경쟁력의 중요한 요소로 대두대고 있다. 이에 따라 데이터를 분석하여 통찰력을 제시할 수 있는 데이터 과학자라 불리는 분석 전문가의 수요가 늘고 있는데, 이들 전문 인력 양성을 위해서는 정부, 학계, 산업의 공동 노력이 필요하다. 본 연구는 특히 교육 분야에서의 빅데이터 활용현황을 조사하고, 새로운 데이터 기반의 맞춤형 서비스 및 교육 과정을 제안한다. 또한, 데이터 과학자 양성을 위한 국내외 대학 및 기업의 대표적인 프로그램들을 살펴보고, 장기적인 관점에서 분석능력을 배양할 수 있는 새로운 교과과정도 제시한다. 본 연구는 다양한 사례를 바탕으로 대학에서 데이터를 활용한 교육환경 개선을 위한 방안을 모색하는데 도움을 주고자 한다.

Keywords

References

  1. Brynjolfsson, E., L. M. Hitt, and H. H. Kim, "Strength in numbers : how does data-driven decision-making affect firm performance?,"Working paper, Sloan School of Management, MIT, 2011. Available at http://papers .ssrn.com/sol3/papers.cfm?abstract_id=1819486 (Accessed 17 June, 2013).
  2. Chang, R. M., R. J. Kauffman, and Y. Kwon, "Understanding the Paradigm Shift to Computational Social Science in the Presence of Big Data," Decision Support Systems, Forthcoming.
  3. Chiang R. H. L, P. Goes, and E. A. Stohr, "Business Intelligence and Analytics Education, and Program Development : A Unique Opportunity for the Information Systems Discipline," ACM Transactions on Management Information Systems, Vol.3, No.3(2012), 1-13.
  4. Choi, D. W., K. P., Cho, and J. K., Shin, "A Study on The Development Methodology for Intelligent College Road Map Advice System," Journal of Intelligence and Information Systems, Vol.11, No.3(2005), 57-67.
  5. Curran, C. and T. O. Halter, PwC 5th Annual Digital IQ Survey, February, 2013. Available at http://www.pwc.com/en_US/us/advisory/2013-digital-iq-survey/assets/2013-global-digit al-iq-survey-report.pdf (Accessed 17 June, 2013).
  6. Davenport, T. H. and B. Manville, Judgment Calls, Harvard Business Review Press, 2012.
  7. Davenport, T. H. and D. J. Patil, "Data Scientist : The Sexiest Job of the 21st Century." Harvard Business Review, October 2012. Available at http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/ (Accessed 17 June, 2013).
  8. Ham, Y. G. and S. B. Chae, Big Data Changes Businesses, Samsung Economic Research Institute, 2012.
  9. Jung, J. H., "The Statistical Approach-based Intelligent Education Support System," Journal of Intelligence and Information Systems, Vol.18, No.1(2012), 109-123.
  10. Lavelle, S., E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwits, "Big data, analytics and the path from insights to value," Sloan Management Review, Vol.5, No.2(2011), 21-32.
  11. Lee, H. S., D. W. Lim, and H. J., Cho, "Personal Information Overload and User Resistance in the Big Data Age," Journal of Intelligence and Information Systems, Vol.19, No.1(2013), 125-139.
  12. Linoff, G. S. and M. J. Berry, Data Mining Techniques : For Marketing, Sales, and Customer Relationship Management, Wiley Computer Publishing, 2011.
  13. Manyika, J., M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A.H. Byers, "Big Data : The next frontier for competition," Mckinsey Global Institute, May 2012.
  14. Parry, M., "Big Data on Campus," New York Times, July 18, 2012. Available at http://www.nytimes.com/2012/07/22/education/edlife/collegesawakening-to-the-opportunities-of-data-mining.html?pagewanted=all (Accessed 17 June, 2013).
  15. Russom, P., Big data analytics, best practices report, fourth quarter 2011, The Data Warehouse Institute, Renton, WA, Sep 2011. Available at http://www.tdwi.org (Accessed 17 June, 2013).
  16. Suh, M. H., "교수가 아니라 디지털 휴머니티 디자이너입니다," Money Today, March 11, 2013. Available at http://www.mt.co.kr/view/mtview.php?type=1&no=2013031016512109978&outlink=1 (Accessed 17 June, 2013).
  17. West, D. M., "Big Data for Education : Data Mining, Data Analytics, and Web Dashboards," Brookings Institution Report, 2012.

Cited by

  1. Analysis study of movement patterns using BigData analysis technology vol.18, pp.5, 2014, https://doi.org/10.6109/jkiice.2014.18.5.1073
  2. Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC vol.19, pp.3, 2013, https://doi.org/10.13088/jiis.2013.19.3.093
  3. A Study Analyzing Y Generation Users' Needs for Next Generation Digital Library Service vol.31, pp.3, 2014, https://doi.org/10.3743/KOSIM.2014.31.3.029
  4. A study to evaluate the digitization level of Korean libraries (part I) vol.34, pp.2, 2016, https://doi.org/10.1108/LHT-10-2015-0102
  5. Learning System for Big Data Analysis based on the Raspberry Pi Board vol.11, pp.4, 2016, https://doi.org/10.13067/JKIECS.2016.11.4.433
  6. 빅데이터의 이해와 도서관 정보서비스에의 활용 vol.24, pp.4, 2013, https://doi.org/10.14699/kbiblia.2013.24.4.053
  7. 감성측정 테크놀로지의 교육적 활용방안 탐색 vol.15, pp.8, 2013, https://doi.org/10.5392/jkca.2015.15.08.625
  8. 대학 비교과 교육과정 관리 및 인증시스템 U-CAAM의 구축 및 운영 vol.24, pp.3, 2015, https://doi.org/10.5859/kais.2015.24.3.115
  9. R을 활용한 SW교육 텍스트데이터 토픽분석 vol.19, pp.4, 2015, https://doi.org/10.14352/jkaie.2015.19.4.517
  10. Current status of big data-related study and tasks of early childhood education in Korea vol.36, pp.6, 2016, https://doi.org/10.18023/kjece.2016.36.6.008
  11. 대학신입생의 진로·학습 역량 강화 프로그램 콘텐츠 설계 및 개발 방안 연구 - H대학의 사례를 중심으로- vol.17, pp.7, 2013, https://doi.org/10.5392/jkca.2017.17.07.384
  12. A Basic Study for Utilizing Big Data in Early Childhood Education vol.37, pp.4, 2013, https://doi.org/10.18023/kjece.2017.37.4.024
  13. Trends in early childhood curriculum through journal article big data analysis vol.37, pp.5, 2017, https://doi.org/10.18023/kjece.2017.37.5.013
  14. 신기술·트렌드의 국내 교육적 활용을 위한 촉진 및 방해 요인 분석 vol.21, pp.5, 2017, https://doi.org/10.14352/jkaie.2017.21.5.567
  15. K-MEANS 알고리즘을 이용한 인지 재활 훈련 방법의 개선 vol.18, pp.6, 2013, https://doi.org/10.7236/jiibc.2018.18.6.259
  16. 데이터 트레이드 직무 모델링에 관한 연구 vol.19, pp.4, 2013, https://doi.org/10.14400/jdc.2021.19.4.033